導數是什麼舉例說明,導數到底是什麼請舉例說明

2021-05-15 16:44:21 字數 5239 閱讀 7139

1樓:胡琪琪學**

導數說白了就是變化率 變化的快慢。。譬如速度對時間的導數就是加速度 加速度越大速度變化越快。。。導數是牛頓為了解決物理問題而發明的。。

當然也有另外一位數學家同一時期也發明了導數。

2樓:玉杵搗藥

書寫起來不方便,還是做個圖吧。

3樓:匿名使用者

導數(derivative)是微積分中的重要基礎概念。當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

導數到底是什麼?請舉例說明

4樓:雨落小號

導數 亦名紀數、微商,由速度變化問題和曲線的切線問題而抽象出來的數學概念。又稱變化率。 如一輛汽車在10小時內走了 600千米,它的平均速度是60千米/小時,但在實際行駛過程中,是有快慢變化的,不都是60千米/小時。

為了較好地反映汽車在行駛過程中的快慢變化情況,可以縮短時間間隔,設汽車所在位置s與時間t的關係為s=f(t),那麼汽車在由時刻t0變到t1這段時間內的平均速度是[f(t1)-f(t0)/t1-t0],當 t1與t0很接近時,汽車行駛的快慢變化就不會很大,平均速度就能較好地反映汽車在t0 到 t1這段時間內的運動變化情況 ,自然就把極限[f(t1)-f(t0)/t1-t0] 作為汽車在時刻t0的瞬時速度,這就是通常所說的速度。一般地,假設一元函式 y=f(x )在 x0點的附近(x0-a ,x0 +a)內有定義,當自變數的增量δx= x-x0→0時函式增量 δy=f(x)- f(x0)與自變數增量之比的極限存在且有限,就說函式f在x0點可導,稱之為f在x0點的導數(或變化率)。若函式f在區間i 的每一點都可導,便得到一個以i為定義域的新函式,記作 f′,稱之為f的導函式,簡稱為導數。

函式y=f(x)在x0點的導數f′(x0)的幾何意義:表示曲線l 在p0[x0,f(x0)] 點的切線斜率。 編輯本段導數是微積分中的重要概念。

導數定義為:當自變數的增量趨於零時,因變數的增量與自變數的增量之商的極限。在一個函式存在導數時,稱這個函式可導或者可微分。

可導的函式一定連續。不連續的函式一定不可導。 物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。

如,導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。 以上說的經典導數定義可以認為是反映區域性歐氏空間的函式變化。 為了研究更一般的流形上的向量叢截面(比如切向量場)的變化,導數的概念被推廣為所謂的「聯絡」。

有了聯絡,人們就可以研究大範圍的幾何問題,這是微分幾何與物理中最重要的基礎概念之一。 http://baike.

什麼是導數?

5樓:落葉ギ風塵

先說明下,你如果把以下的方法弄明白了,那麼導數對你就不會構成任何威脅了,提前恭喜你了!

方法如下:

這裡將列舉六類基本初等函式的導數以及它們的推導過程(初等函式可由之運算來):

1.常函式(即常數)y=c(c為常數) y'=0 【y=0 y'=0:導數為本身的函式之一】

2.冪函式y=x^n,y'=n*x^(n-1)(n∈r) 【1/x的導數為-1/(x^2)】

基本導數公式

3.指數函式y=a^x,y'=a^x * lna 【y=e^x y'=e^x:導數為本身的函式之二】

4.對數函式y=logax,y'=1/(xlna) (a>0且a≠1,x>0);【y=lnx,y'=1/x】

5.三角函式

(1)正弦函式y=(sinx )y'=cosx

(2)餘弦函式y=(cosx) y'=-sinx

(3)正切函式y=(tanx) y'=1/(cosx)^2

(4)餘切函式y=(cotx) y'=-1/(sinx)^2

6.反三角函式

(1)反正弦函式y=(arcsinx) y'=1/√1-x^2

(2)反餘弦函式y=(arccosx) y'=-1/√1-x^2

(3)反正切函式y=(arctanx) y'=1/(1+x^2)

(4)反餘切函式y=(arccotx) y'=-1/(1+x^2)

口訣為了便於記憶,有人整理出了以下口訣:

常為零,冪降次,對導數(e為底時直接導數,a為底時乘以lna),指不變(特別的,自然對數的指數函式完全不變,一般的指數函式須乘以lna);正變餘,餘變正,切割方(切函式是相應割函式(切函式的倒數)的平方),割乘切,反分式

推導在推導的過程中有這幾個常見的公式需要用到:

1.1(u±v)'=u'±v'

2(uv)'=u'v+uv'

3(u/v)'=(u'v-uv')/ v^2

2. 原函式與反函式導數關係(由三角函式導數推反三角函式的):y=f(x)的反函式是x=g(y),則有y'=1/x'.

3. 複合函式的導數:

複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。

4. 積分號下的求導法則:

d(∫f(x,t)dt φ(x),ψ(x))/dx=f(x,ψ(x))ψ'(x)-f(x,φ(x))φ'(x)+∫[f 'x(x,t)dt φ(x),ψ(x)]

6樓:歲潤靜好

1、導數的定義

設函式y=f(x)在點x=x0及其附近有定義,當自變數x在x0處有改變數△x(△x可正可負),則函式y相應地有改變數△y=f(x0+△x)-f(x0),這兩個改變數的比叫做函式y=f(x)在x0到x0+△x之間的平均變化率.

如果當△x→0時,有極限,我們就說函式y=f(x)在點x0處可導,這個極限叫做f(x)在點x0處的導數(即瞬時變化率,簡稱變化率),記作f′(x0)或,即

函式f(x)在點x0處的導數就是函式平均變化率當自變數的改變數趨向於零時的極限.如果極限不存在,我們就說函式f(x)在點x0處不可導.

2、求導數的方法

由導數定義,我們可以得到求函式f(x)在點x0處的導數的方法:

(1)求函式的增量△y=f(x0+△x)-f(x0);

(2)求平均變化率;

(3)取極限,得導數

3、導數的幾何意義

函式y=f(x)在點x0處的導數的幾何意義,就是曲線y=f(x)在點p(x0,f(x0))處的切線的斜率f′(x0).

相應地,切線方程為y-y0= f′(x0)(x-x0).

4、幾種常見函式的導數

函式y=c(c為常數)的導數 c′=0.

函式y=xn(n∈q)的導數 (xn)′=nxn-1

函式y=sinx的導數 (sinx)′=cosx

函式y=cosx的導數 (cosx)′=-sinx

5、函式四則運算求導法則

和的導數 (u+v)′=u′+v′

差的導數 (u-v)′= u′-v′

積的導數 (u·v)′=u′v+uv′

商的導數 .

6、複合函式的求導法則

一般地,複合函式y=f[φ(x)]對自變數x的導數y′x,等於已知函式對中間變數u=φ(x)的導數y′u,乘以中間變數u對自變數x的導數u′x,即y′x=y′u·u′x.

7、對數、指數函式的導數

(1)對數函式的導數

1; 2.公式輸入不出來

其中(1)式是(2)式的特殊情況,當a=e時,(2)式即為(1)式.

(2)指數函式的導數

1(ex)′=ex

2(ax)′=axlna

其中(1)式是(2)式的特殊情況,當a=e時,(2)式即為(1)式.

導數又叫微商,是因變數的微分和自變數微分之商;給導數取積分就得到原函式(其實是原函式與一個常數之和)。

7樓:感性的光

在深度學習中,可以用於函式進行線性推導的數值叫做導數. 模型學習樣本特徵的整個過程就是在自動求導.多麼簡單,而美妙的理解.不要在意那些細節

什麼是導數?

8樓:縱橫豎屏

當函式y=f(x)的自變數x在一點x0上產生一個增量δx時,函式輸出值的增量δy與自變數增量δx的比值在δx趨於0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。

導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。如果函式的自變數和取值都是實數的話,函式在某一點的導數就是該函式所代表的曲線在這一點上的切線斜率。

導數的本質是通過極限的概念對函式進行區域性的線性逼近。例如在運動學中,物體的位移對於時間的導數就是物體的瞬時速度。

不是所有的函式都有導數,一個函式也不一定在所有的點上都有導數。若某函式在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函式一定連續;不連續的函式一定不可導。

對於可導的函式f(x),x↦f'(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。

實質上,求導就是一個求極限的過程,導數的四則運演算法則也**於極限的四則運演算法則。反之,已知導函式也可以倒過來求原來的函式,即不定積分。

微積分基本定理說明了求原函式與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。

擴充套件資料:

導數與函式的性質:

單調性:

(1)若導數大於零,則單調遞增;若導數小於零,則單調遞減;導數等於零為函式駐點,不一定為極值點。需代入駐點左右兩邊的數值求導數正負判斷單調性。

(2)若已知函式為遞增函式,則導數大於等於零;若已知函式為遞減函式,則導數小於等於零。

根據微積分基本定理,對於可導的函式,有:

如果函式的導函式在某一區間內恆大於零(或恆小於零),那麼函式在這一區間內單調遞增(或單調遞減),這種區間也稱為函式的單調區間。

導函式等於零的點稱為函式的駐點,在這類點上函式可能會取得極大值或極小值(即極值可疑點)。進一步判斷則需要知道導函式在附近的符號。

對於滿足的一點,如果存在使得在之前區間上都大於等於零,而在之後區間上都小於等於零,那麼是一個極大值點,反之則為極小值點。

x變化時函式(藍色曲線)的切線變化。函式的導數值就是切線的斜率,綠色代表其值為正,紅色代表其值為負,黑色代表值為零。

凹凸性:

可導函式的凹凸性與其導數的單調性有關。如果函式的導函式在某個區間上單調遞增,那麼這個區間上函式是向下凹的,反之則是向上凸的。

如果二階導函式存在,也可以用它的正負性判斷,如果在某個區間上恆大於零,則這個區間上函式是向下凹的,反之這個區間上函式是向上凸的。曲線的凹凸分界點稱為曲線的拐點。

互動營銷是什麼能舉例說明嗎,什麼是互動營銷

簡單的說來就是需要宣傳的產品或服 源務,通bai過媒介平臺,和消費者形du成互動,達到zhi宣傳的目的。例如微博紅dao 人發個美照,為口紅做宣傳,這就可以稱為互動營銷。需要互動營銷,你可以聯絡戈壁傳媒。專業的營銷機構,資深網路營銷方案 商。什麼是互動營銷?互動營銷主要是指有廣大消費者參與,宣傳的一...

在詩詞裡面什麼叫押韻?舉例說明詩的韻腳是什麼意思?請舉例說明。

押韻,又作壓韻,是指在韻文的創作中,在某些句子的最後一個字,都使用韻母相同或相近的字,使朗誦或詠唱時,產生鏗鏘和諧感。如下 床前明月光 gu ang 疑是地上霜 shu ang 舉頭望明月 低頭思故鄉 xi ang 什麼叫 押韻 在 韻文 裡,用同一個 韻 的字放在句尾,使之產生一種聲音迴環的和諧感...

什麼是DNS?主要功能是什麼?舉例說明域名的結構

dns,簡單地說,就是domain name system,翻成中文就是 域名系統 dns有什麼用途?在一個tcp ip架構的網路 例如inter 環境中,dns是一個非常重要而且常用的系統。主要的功能就是將人易於記憶的domain name與人不容易記憶的ip address作轉換。而上面執行dn...