1樓:匿名使用者
說明:最上面是路由器,中間是一個三層交換機,下面是四臺pc機(電腦)
如果你需要更加詳細的再向我要!
你需要的拓撲圖:
2樓:喵嗚喵
ginseng,人家問的是「拓撲」的意思,不是「網路拓撲結構」的意思。
我查到了一些資料,看看是否滿足你的需要:
*****==拓撲學的由來*****=
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的範疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中佔著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多面體的尤拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,哥尼斯堡七橋問題示意圖普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閒暇時經常在這上邊散步,一天有人提出:
能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
2023年,有人帶著這個問題找到了當時的大數學家尤拉,尤拉經過一番思考,很快就用一種獨特的方法給出瞭解答。尤拉把這個問題首先簡化,化簡後用點、線表示七橋問題中路、橋的示意圖他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。
經過進一步的分析,尤拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和尤拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、稜數是e、面數是f,那麼它們總有這樣的關係:
f+v-e=2。僅有的五種正多面體
根據多面體的尤拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。2023年,畢業於倫敦大學的弗南西斯.格思裡來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:
「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」
2023年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~2023年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的**,宣佈證明了四色定理。
但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的程序。2023年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩臺不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。
不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。
上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。
**********==什麼是拓撲學?***************
拓撲學的英文名是topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,2023年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。
拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的物件是點、線、面之間的位置關係以及它們的度量性質。拓撲學對於研究物件的長短、大小、面積、體積等度量性質和數量關係都無關。
舉例來說,在通常的平面幾何裡,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學裡所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學裡沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。
例如,前面講的尤拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。
拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。
在拓撲學裡不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,儘管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。
在一個球面上任選一些點用不相交的線把它們連線起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。
應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。
直線上的點和線的結合關係、順序關係,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在2023年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這裡不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函式論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
因為大量自然現象具有連續性,所以拓撲學具有廣泛聯絡各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函式關係。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。
比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全域性聯絡的情況,因此,這兩門學科應該存在某種本質的聯絡。1945 年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯絡,並推進了整體幾何學的發展。
拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。
現在,這兩個分支又有統一的趨勢。
拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。
3樓:匿名使用者
可以用億圖圖示來畫,很簡單。
有很多模板參考,素材拖進去就行了
計算機考試,要求畫出網路拓撲圖。要怎麼畫呢?
4樓:匿名使用者
網路拓撲圖如下:
網路拓撲結構是指用傳輸**互連各種裝置的物理佈局,就是用什麼方式把網路中的計算機等裝置連線起來。拓撲圖給出網路伺服器、工作站的網路配置和相互間的連線,它的結構主要有星型結構、環型結構、匯流排結構、分散式結構、樹型結構、網狀結構、蜂窩狀結構等。
擴充套件資料
每個端使用者都與兩個相臨的端使用者相連,因而存在著點到點鏈路,但總是以單向方式操作,於是便有上游端使用者和下游端使用者之稱;資訊流在網中是沿著固定方向流動的,兩個節點僅有一條道路,故簡化了路徑選擇的控制;環路上各節點都是自舉控制。
分散式拓撲結構缺點為連線線路用電纜長,造價高;網路管理軟體複雜;報文分組交換、路徑選擇、流向控制複雜;在一般區域網中不採用這種結構。
端使用者裝置因為故障而停機時也不會影響其它端使用者間的通訊。同時它的網路延遲時間較小,傳輸誤差較低。但這種結構非常不利的一點是,中心繫統必須具有極高的可靠性,因為中心繫統一旦損壞,整個系統便趨於癱瘓。
對此中心繫統通常採用雙機熱備份,以提高系統的可靠性。
5樓:
你有microsoft visio軟體嗎?用這個軟體就能快速畫出這個網路拓撲圖。如果沒有,用microsoft word也湊活了。
6樓:水土第一
使用visio可以的
7樓:莫傾城
筆試吧。如果筆試你就按照他描述的畫出路由器交換機和伺服器用文字標記一下就行。。。
如何畫企業網路拓撲圖?
8樓:匿名使用者
安裝microsoft office裡面的visio軟體,這個是專門用來畫拓撲圖的,你可以按照提示選擇複雜網路圖,新增相關裝置,你們公司的網路應該是屬於星型的。
9樓:匿名使用者
網路結構屬於什麼結構,環型?星型?這個問題不用問,直接在百版度上一搜尋
就出來了。
**權插入的問題:首先把**儲存在一個位置,然後選擇要插入的位置,在選單欄裡選擇「插入」然後選擇來自己檔案,找到這個存放的檔案點插入就可以了。
10樓:匿名使用者
對,visio可以,我試過
11樓:娜雅雅蘭公主
熱聽歌的高度感到畢業一年
我想畫出單位的網路拓撲圖,用什麼軟體好?
12樓:匿名使用者
visio,能搞定。office大家族中的一員。
13樓:匿名使用者
你會什麼軟體?painter。。autacad。。maya只要你會操作,多的是!
14樓:匿名使用者
office工具visio
求助 cisco網路拓撲圖用什麼工具來畫
建議就用ppt畫,很方便,而且移植性好,以前我也用visio畫,雖然畫的時候方便,但用的時候移植性很不好,關於圖示可以到cisco官方去下在,搜尋cisco圖示,就有很多,也是ppt格式的 用思科網路模擬器cisco packet tracer最好,不僅漂亮,而且可以配置。現在都用edraw max...
簡單的康乃馨怎麼畫,最簡單的康乃馨怎麼畫
1 畫出一個花托來 簡單的源半圓。2 在最中間畫bai出第一個du花瓣,確定好位置。zhi3 接著畫出第二個第三個,dao佔據整個花托,康乃馨的大概形狀就出來了。4 在兩個花瓣的中間處加上小花瓣,形成疊加的感覺。5 在花托底部最中間畫上一根線,作為花莖,加上葉子,簡筆畫康乃馨就畫好了。康乃馨花語 在...
漂亮而簡單的花怎麼畫,漂亮而又簡單的花怎麼畫簡筆畫
認真觀察玫瑰花,概括它的外形特點 首先,根據畫面大小確定玫瑰花的數量和大小。注意方向和大小都要有不同。這樣畫面才會顯得生動 自然。運用概括的方法畫出花心,旋轉的線方向要有不同。花苞部分要畫得豐滿,這樣會顯得花兒很可愛。畫出花莖和花枝。填補花葉,葉子要有大小 遠近 遮擋關係 的變化。漂亮而簡單的花就完...