1樓:匿名使用者
1m=100cm
100-85=15cm
答:凳子有15cm
數學分析和高等數學有什麼區別?
2樓:e滾滾滾
數學分析注重原理分析,高等數學注重應用實際
1、數學分析概念多,證明多,是學習研究複雜函式的方法,高等數學主要的目的是解決工程上遇到的一些問題。
2、高等數學側重於應用 而數學分析更側重於理論的推導 。
3、數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多。
4、數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。
5、數學分析作為數學系本科生的基礎課是整個分析學的基礎,數學分析是檢驗一個人對數學是否感興趣的標杆。
不是數學專業的建議還是學習高等數學,畢竟都是側重於應用數學知識,而不是**原理。
高等數學同濟版是大多數大學的高數教材,可以參考一下。
3樓:塔駡德
高等數學是對大學數學的一個總稱。
高等數學有著很多分支其中有數學分析,高等代數,微分方程等等。非數學類專業所學的課程,是數學中的基礎,內容全面,覆蓋面廣,他容納了數學專業所學的《數學分析》《高等代數》《空間解析幾何》,但相對簡單,重在做題,對定理和公式的由來不做要求。在工科中本分這麼細,統稱高等數學。
數學分析是數學類專業的課程,數學分析概念多,證明多。相對抽象,難度較大,重在證明定理和公式的由來。
拓展資料:
從內容上說高等數學包含:極限理論(不過不含基礎性的證明),一元微分和積分,弧微分,多元微分和積分,初等常微分方程,級數,空間解析幾何,向量代數等。
數學分析:
(1)從三個角度,戴德金分割,區間套,序列闡述了有理數是如何向實數擴張的)極限理論,(包含基礎性的證明,比如柯西收斂定理的證明),一元微分和積分,多元微分和積分,級數等。
(2)從形式上看,數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理,很多書本都是選擇其中一個當作公理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多,比如初等的常微分方程就是應用的表現。
(3)從目的上說,數學分析主要是數學系以及其他極少數系(比如資訊方面的學生)的不本科生學習,主要目的是養成良好的證明習慣,為以後數學工作打好基礎。
4樓:娉婷嫋嫋
高等數學包括數學分析。
區別:
1、內容上
從內容上說高等數學包含:極限理論(不過不含基礎性的證明),一元微分和積分,弧微分,多元微分和積分,初等常微分方程,級數,空間解析幾何,向量代數等。
數學分析包含:實數理論,(從三個角度,戴德金分割,區間套,序列闡述了有理數是如何向實數擴張的)極限理論,(包含基礎性的證明,比如柯西收斂定理的證明),一元微分和積分,多元微分和積分,級數等
2、形式上
從形式上看,數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理,很多書本都是選擇其中一個當作公理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多,比如初等的常微分方程就是應用的表現。
3、目的
從目的上說,數學分析主要是數學系以及其他極少數系(比如資訊方面的學生)的本科生學習,主要目的是養成良好的證明習慣,為以後數學工作打好基礎;高等數學主要是面向工科的學生以及物理經濟等專業的學生的。
拓展資料:
高等數學指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
是工科、理科研究生考試的基礎科目。
又稱高階微積分,分析學中最古老、最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,幷包括它們的理論基礎(實數、函式和極限的基本理論)的一個較為完整的數學學科。它也是大學數學專業的一門基礎課程。
數學中的分析分支是專門研究實數與複數及其函式的數學分支。它的發展由微積分開始,並擴充套件到函式的連續性、可微分及可積分等各種特性。這些特性,有助我們應用在對物理世界的研究,研究及發現自然界的規律。
5樓:1234小妖精
數學分析和高等數學的主要區別為:數學分析注重原理分析,高等數學注重應用實際。從難度上來講,數學分析更難,比高等數學學得更深更細,數學分析對於數學系的學生是要連續學習三個學期的,作為後面專業學習的基礎課程。
1數學分析和高等數學的區別
1、數學分析概念多,證明多,是學習研究複雜函式的方法,高等數學主要的目的是解決工程上遇到的一些問題。
2、高等數學側重於應用 而數學分析更側重於理論的推導 。
3、數學分析每一個定理都有嚴格的證明,所有的定理最後都歸結與6個等價的原理;高等數學講究應用,很多定理是直接給出,或者給出一段簡單的描述,書本里關於應用的內容很多。
4、數學分析更偏重於推導過程,而高等數學更偏重於結果的使用。
5、數學分析作為數學系本科生的基礎課是整個分析學的基礎,數學分析是檢驗一個人對數學是否感興趣的標杆。
6樓:匿名使用者
數學分析一般為數學專業的教材,其他理科專業主要學習高等數學。
數學分析比高等數學難度大。但是高等數學涵蓋的內容除了數學分析的一些基本知識微積分的部分,還有空間解析幾何的內容。學理論物理基本上高等數學就夠用了。
如果你要考研,那高數考試內容還含有概率統計和線性代數兩塊內容,不過還是以微積分為主。
7樓:free無法修改
高數跟數分一比就是渣渣
8樓:匿名使用者
高等數學是本科學的,其實算挺簡單的了。數學分析是研究生學的,像聽天書一樣。
9樓:匿名使用者
簡單說,論廣度,高等數學範圍更廣。
論深度,數學分析更深。
做理論物理怎麼能不學數學分析呢,高等代數太淺了。
10樓:匿名使用者
數學分析是數學專業的基礎課,比高等數學精細
高等數學是除數學專業外其他系的數學教程,內容比數學分析廣泛,涵蓋很多數學知識,數學分析的內容也在其中
大學課程中的數學分析很難嗎?數學分析是什麼?
11樓:匿名使用者
數學分析(mathematical analysis)是數學專業的必修課程之一,基本內容是微積分,但是與微積分有很大的差別。
微積分學是微分學(differential calculus)和積分學(integral caculus)的統稱,英語簡稱calculus,意為計算,這是因為早期微積分主要用於天文、力學、幾何中的計算問題。後來人們也將微積分學稱為分析學(analysis),或稱無窮小分析,專指運用無窮小或無窮大等極限過程分析處理計算問題的學問。
早期的微積分,由於無法對無窮小概念作出令人信服的解釋,在很長的一段時間內得不到發展。柯西(cauchy)和後來的魏爾斯特拉斯(weierstrass)完善了作為理論基礎的極限理論,使微積分逐漸演變為邏輯嚴密的數學基礎學科,被稱為「mathematical analysis」,中文譯作「數學分析」。
數學分析的基礎是實數理論。實數系最重要的特徵是連續性,有了實數的連續性,才能討論極限,連續,微分和積分。正是在討論函式的各種極限運算的合法性的過程中,人們逐漸建立起嚴密的數學分析理論體系。
《數學分析》課程是一門面向數學類專業的基礎課。學好數學分析(和高等代數)是學好其他後繼數學課程如微分幾何,微分方程,複變函式,實變函式與泛函分析,計算方法,概率論與數理統計等課的必備的基礎。
作為數學系最重要的基礎課之一,數學科學的邏輯性和歷史繼承性決定了數學分析在數學科學中舉足輕重的地位,數學的許多新思想,新應用都源於這堅實的基礎。數學分析出於對微積分在理論體系上的嚴格化和精確化,從而確立了在整個自然科學中的基礎地位,並運用於自然科學的各個領域。同時,數學研究的主體是經過抽象後的物件,數學的思考方式有鮮明的特色,包括抽象化,邏輯推理,最優分析,符號運算等。
這些知識和能力的培養需要通過系統、紮實而嚴格的基礎教育來實現,數學分析課程正是其中最重要的一個環節。
我們立足於培養數學基礎紮實,知識面寬廣,具有創新意識、開拓精神和應用能力,符合新世紀要求的優秀人才。從人才培養的角度來講,一個學生能否學好數學,很大程度上決定於他進大學伊始能否將《數學分析》這門課真正學到手。
本課程的目標是通過系統的學習與嚴格的訓練,全面掌握數學分析的基本理論知識;培養嚴格的邏輯思維能力與推理論證能力;具備熟練的運算能力與技巧;提高建立數學模型,並應用微積分這一工具解決實際應用問題的能力。
微積分理論的產生離不開物理學,天文學,幾何學等學科的發展,微積分理論從其產生之日起就顯示了巨大的應用活力,所以在數學分析的教學中,應強化微積分與相鄰學科之間的聯絡,強調應用背景,充實理論的應用性內容。數學分析的教學除體現本課程嚴格的邏輯體系外,也要反映現代數學的發展趨勢,吸收和採用現代數學的思想觀點與先進的處理方法,提高學生的數學修養。 很多人都說數分很難,確實是這樣。
不過和高考數學的最後一題比起又相當的簡單了,我是說複雜程度相比起來的話。學好一門學科重要的還是思考和理解,特別是數分這種數學邏輯性思考很強的學科,當然很有勤奮的練習,我覺得如果一個一天只會捧著書上下課但很少翻書的人再聰明也會對它茫然,畢竟都沒學習過怎麼不難,但只要用心學,其實數分也就是門很基礎的課程,為以後很多數學專業學科打下基礎。 我推薦幾本書,你可以看看,推薦復旦陳傳璋的那本,陳紀修那本也還行,不過課後題目還是前一本好些。
最好別用什麼同濟版的微積分,估計連菜鳥都不怎麼看。 參考書,這是最重要的。
首推《吉米多維奇》,雖然這套書題目多,但有價值的題目可以說不是很多,至少可以壓縮到原來的1/3。有一本《數學分析例題選講》(3本),就是把這套書壓縮了一下,水平挺高的。還有吉米多維奇裡面的方法不是很好,盡信書不如無書當然不行,最好自己想想好的方法,這本書是專門為學習中等的同學看的,當然高手也可以參考參考。
再說《研究生入學考試指導(數學分析)》,山東科技出版社,書很難找,不過比吉米多維奇好得多,幾乎沒有一題不經典。全書300多道題,建議每題都看看,同等題目會比吉米多維奇簡單(甚至很簡單)。第六章有幾題很難,不可能考的。
這本書是為中等偏上的同學編的。
最後看看《數學分析中的證明方法與難題選解》,題目覆蓋面不是很全,不過解法很經典,比上面的都簡練的多。看完這本還不行的話說明你水平太高了,去編本教材吧!
因為本人水平不是很高,最多隻能做到這樣了。
一根祝壽蠟燭長85cm,點燃時每小時縮短5cm(1)請寫出
1 蠟燭的長等於蠟燭的原長減去燃燒的長度,y 85 5t 2 蠟燭燃盡的時候蠟燭的長度y 0,85 5t 0,解得 t 17,該蠟燭可點燃17小時 8分 一根祝壽蠟燭長85cm,點燃時每小時縮短5cm。小題1 1 請寫出點燃後蠟燭的長y cm 與蠟燭燃燒時間t 小題2 2 17小時 1 點燃蠟燭 一...
媽媽的身高是1 68米,小紅站在0 4米的凳子上比媽媽高0 22米,小紅的身高是多少
0.4 0.22 0.18 米 1.68 0.18 1.5 米 答 小紅身高1.5米 1 1.68 0.4 0.22 1.5 2 1.68 0.22 0.4 1.5 3 1.68 0.4 0.22 1.5 小紅的身高是1.5米 答案是 1.68 0.22 0.4 1.90 0.4 1.5 米 答 小...
我有一副長2 1m,寬85cm的富滿華庭繡純手工,可以值多少錢
大約在800 1500元,採納吧 我想問下你的書還在嗎 樓主能把圖紙分享一下嗎?我的弄壞了謝謝 可能我說的價錢不多,大概2000到3000左右吧鑲好的,太貴不好賣這個一般遇到人買就可以有個好價錢,富滿華庭十字繡值多少錢 20 這個具體價錢還得看您的繡的整齊度,滿繡還是部分的,多大尺寸等,可以發圖幫你...