1樓:丫丫的蘿莉控
c 由補碼定義可知,當數字大於等於0時,補碼正數表示為0≤x≤2∧(n-1)-1,這道題中n=8,所以正數部分是0≤x≤127 補碼負數表示 -(2∧(n-1)-1)≤x<0 n=8 帶進去得到 -127 ≤x<0 所以得到 -127 ≤x≤127
用8位2進位制補碼錶示帶符號的十進位制整數的範圍是
2樓:匿名使用者
用8位2進位制補碼錶示帶符號的十進位制整數的範圍是-128到127。
8位2進位制帶符號的數,一共可以表示2^8(256)個數,第一位為符號位,由於符號位0代表正數,1代表負數,所以最小的數為10000000(-128),最大的數為01111111(127)。
這裡解釋一下,最小數為什麼不是11111111,由於規定0的補碼唯一,是00000000,所以8位二進位制數可以表示256個數(並非正0和負0一樣所得出的255個),也就是說10000000表示的不是0,而是-128,它也就是最小的數而並非11111111(-127)。
擴充套件資料
原碼:在數值前直接加符號位的表示方法。
反碼:正數的反碼與原碼相同。負數的反碼,符號位為「1」,數值部分按位取反。例如原碼1110的反碼為1001。
補碼:正數的補碼和原碼相同。負數的補碼則是符號位為「1」,數值部分按位取反後再在末位加1。也就是反碼加1。例如原碼1110的補碼為1010。
3樓:
要求範圍,就是求最大和最小值了.
8位有符號的整數,最左邊是一個符號位,後面七位數值.
正數的補碼,數值位就是其絕對值,所以範圍就是:
0 0000000~0 1111111
即 +0~+127.
負數的補碼,數值位要求反加一才是其絕對值,所以範圍就是:
1 0000000~1 1111111
即 -128~-0.
綜合,就是:-128~+127.
關於8個二進位制位原碼、補碼錶示帶符號整數取值範圍的問題。
4樓:可軒
8位字長有符號整數:原碼範圍:1111 1111b~0111 1111b
對應真值範圍: -111 1111b~+111 1111b, 即 -127d~ +127d
-----------------------------
補碼範圍:1000 0000b~0111 1111b
對應的真值範圍:-1000 0000b~+111 1111b, 即 -128d~ +127d
-128d的補碼不能用原碼求反加1得到,而是:
8位字長的模 =2^8 =1 0000 0000b , x = -128d = -1000 0000b
[x]補 =x +模 =(-1000 0000b)+ (1 0000 0000b) =1000 0000b
用8位二進位制表示帶符號的整數範圍是_____。
5樓:匿名使用者
計算機中的資料一般都是以補碼(帶符號)的形式存在的
而8位補碼所能表示的資料範圍是:-2^7到(2^7) - 1,即-128 到 127
至於是怎麼得到8位補碼所能表示的資料範圍的呢
我來告訴你
首先,補碼的編碼規則是:正數的補碼等於原碼,負數的補碼可以先求對應整數的原碼,在對原碼進行取反再加一,取反時,包括符號位
正數的補碼範圍是0000 0000 ~ 0111 1111 即0 ~ 127,
最左邊那個0是符號位,0代表正,1代表負
負數的補碼範圍是正數的原碼0000 0000 ~ 0111 1111 取反後,取反是將二進位制數中的1變0,0變1
所以得到 1111 1111 ~ 1000 0000 然後在加1 得 1 0000 0000 ~ 1000 0001,
所以1 0000 0000 = -128 而 1000 0001 = -1
所以負數的補碼範圍是-128到-1
終上所述
用8位二進位制表示帶符號的整數範圍是-128 ~ 127_____。
6樓:匿名使用者
8位二進位制整數範圍是(1000 0000)~(0111 1111)。
解釋:對應十進位制整數範圍是(-128) ~(+127),其中-128(1000 0000)只有補碼,沒有原碼和反碼,其餘的(-127)~(+127)的二進位制數都是原碼,即是(1111 1111 ~ 0111 111)。
7樓:匿名使用者
0111 1111~1111 1111
十進位制是 正負(2^8-1)
8樓:樂正水荷
-128 到 127
8位二進位制所能表示的無符號整數和帶符號整數的範圍是多少?
9樓:蟈蟈蟈蟈
8位二進位制所能表示的無符號整數範圍為0~255;8位二進位制所能表示的帶符號整數範圍為-128~127。
無符號整數與帶符號整數:
一、無符號整數
無符號數(unsigned number)是相對於有符號數而言的,指的是整個機器字長的全部二進位制位均表示數值位,相當於數的絕對值。
用二進位制數的最高位表示符號,最高位是0,表示正數,最高位是1,表示負數。這種說法本身沒錯,可是如果沒有下文,那麼它就是錯的。至少它不能解釋,為什麼字元型別的-1用二進位制表示是「1111 1111」(16進製為ff);而不是我們更能理解的「1000 0001」。
二、帶符號整數
有符號整數可表示正整數、0和負整數值。其二進位制編碼方式包含 符號位 和 真值域。 我們以8bit的儲存空間為例,最左1bit為符號位,而其餘7bit為真值域,因此可表示的數值範圍是,對應的二進位制補碼編碼是。
補碼錶示的二進位制整數01101101的反碼和原碼是
8位二進位制補碼01101101就是整數 109,變號操作之後變成 109,而 109的8位二進位制補碼為10010011。原碼錶示 將符號位數碼化了的數,其中 用0表示,用1表示。反碼錶示 正數的反碼錶示與原碼錶示一樣 負數的反碼錶示是原碼錶示的符號位不變,數值位逐位取反。補碼錶示 正數的補碼錶示...
0 25的8位二進位制原碼,反碼,補碼的表示
0.25 1b 4 1b 2 2 將1b右移2位得 0.25 0.01b 正數的原碼反碼補碼相同,若字長8位,則 0.25 原 0.25 反 0.25 補 000000.01b 浮點數表示法 或 0.25 原 0.25 反 0.25 補 0.0100000b 定點數表示法 字尾b表示二進位制 用八位...
8位二進位制補碼所能表示的十進位制整數範圍是多少至多
10000000 二進位制 128 十進位制 11111111 二進位制 255 十進位制 所以 8位二進位制補碼所能表示的十進位制整數範圍是128至255 128 127 128的補碼為11111111127的補碼為01111111 8位二進位制補碼所能表示的十進位制整數範圍是多少至 計算機儲存的...