如何提高口算速度,求一些口算的高等技巧,加減和乘除都要,打算舉行大學生口算比賽

2021-08-15 22:15:09 字數 7080 閱讀 9733

1樓:街頭尒覇迋

一、20以內加減法的口算

1、加法

20以內進位加法思維訓練的方法很多:有點數法、接數法、湊十法,口決法,推導法、減補法等。要根據學生所處的文化環境、家庭背景和自身思維的不同,由學生自己動手實踐、自主探索與合作交流來實現。

這裡重點介紹:減補法。

我們規定:兩個可以湊成10的數是互為補數,1和9,2和8,3和7等。都是互為補數。

方法是:用第一個加數減去第二個加數的補數,再加上10 。比如:

9+4=13

思考方法:第二個加數的補數是6;第一個加數9減去4的補數6得3;3加上10,得13。 即 9+4 = 9 - 6+10 = 3+10 = 13

這樣的思考途徑,對於培養學生的逆向思維能力很有好處,但只能符合思維能力強的學生。教師可以根據情況引導。

2、減法

20以內退位減法是以20以內加法為基礎的,方法有:想加法計算減法、破十法、分解減法後連減法、記小數數到大數、推導法、加補法等。這裡重點介紹加補法:

方法是:用被減數個位上的數加上減數的補數,同時去掉十位上的「1」,比如:被減數

13 - 4 = 9

思維方法:被減數個位上的3不夠減;減數4的補數是6;6加上被減數個位上的3,得9,同時去掉十位上的「1」。

二、兩位數加減法口算:

兩位數加減法這裡重點介紹減補法和加補法,首先我們規定:兩個和為100的數互為百補數。

1、加法

兩位數加法有四種現象,即個位、十位都不進位的;個位進位十位不進位的;十位進位個位不進位的;個位十位都進位的。下面分別介紹:

(1)、個位十位都不進位的兩位數加法,用數的組成法直接相加。

例:34 + 52 = 30 + 50 + 4 + 2 = 86

(2)個位進位十位不進位的兩位數加法,思維方法是:

一個加數十位上的數字加上另一個加數十位上的數字再加「1」,得十位上的數字,個位用一個加數個位上的數字減去另一個加數個位上數字的百補數,得個位上的數字。

例:36+ 47 = 83

口算過程:十位上的數字是3 + 4 + 1=8

個位上的數字是6 - 3(3是7的十補數)=3

或 7 - 4(4是6的十補數)=3

所以:36+47十位數字是8,個位數字是3,等於83。

(3)十位進位個位不進位的兩位數加法,思維方法是:

首先確定「百」位數字是「1」,然後用一個加數十位上的數字減去另一個加數十位上數字的十補數,得十位上的數字,個位上的數用數的組成法直接相加。

例:83 + 64 = 147

口算過程:百位是「1」.

十位數字是 8 - 4 = 4 或 6 - 2 = 4.

個位是 3 +4 = 7.

所以:83 + 64百位數字是1,十位數字是4,個位數字是7,等於147

(4)個位十位都進位的兩位數加法,思維方法是:

首先確定百位數字是「1」,然後用一個加數減去另一個加數的百補數,得十位和個位上的數字。

例:86 + 59= 145

口算過程:百位是「1」.

十位和個位上的數字用 86 - 41(59的百補數)=45

或 59 - 14(86的百補數) =45.

所以:86+59百位是1,十位和個位是45,等於145.

2、退位減法

兩位數減法我們重點**退位減法。

(1)兩位數減兩位數, 思維方法是:

首先用被減數十位數字減去減數十位數字再減「1」,是差的十位數字,然後用被減數個位數字加上減數個位數字的十補數,是差的個位數字。

例:83 - 26 = 57

口算過程:十位數字是 8 - 2 -1= 5

個位數字是 3+4(4是6的十補數)=7

所以 83-26十位數字是5,個位數字是7,等於57.

(2)被減數是一百幾十的退位減法,思維方法是:

首先確定百位是1-1=0 即這個數的差是幾十幾,然後用被減數十位和個位的數字加上減數十位和個位數字的百補數,就是差。

例132 - 67 = 65

口算過程:32+33(33是67的百補數)=65.

三、兩位數乘法口算

一位數乘法口算就是口訣表,在講清算理的基礎上要求背會。這裡重點介紹幾種兩位數乘法的特殊演算法。

1、兩個相同因數積的口演算法;(平方口演算法)

(1)、基本數與差數之和口演算法:

基本數:這個數各位分別平方後,組成一個新的數稱基本數。十位平方為基本數百位以上的數,個位平方為基本數十位和個位數,十位無數用零佔位。

差數:這個數十位和個位的積再乘20稱差數。

基本數 + 差數 = 這兩個相同因數的積。

例1、13×13

基本數:百位:1×1=1

十位:用0佔位

個位:3×3=9

所以基本數就是 109

差數:1×3×20=60

基本數 + 差數 = 109 + 60 = 169

所以13×13=169

例2、67×67

基本數:百位以上數字是 6×6=36

十位和個位數字是7×7=49

所以基本數是 3649

差數:6×7×20=840

基本數+差數=3649+840=4489

所以:67×67 = 4489

(2)三步到位法

思維過程:

第一步:把這個數個位平方。得出的數,個位作為積的個位,十位保留。

第二步:把這個數個位和十位相乘,再乘2,然後加上第一步保留的數,所得的數的個位就是積的十位數,十位保留。

第三步:把這個數十位平方,加上第二步保留的數,就是積的百位、千位數。

例1、24×24

第一步:4×4=16 「1」保留,「6」就是積的個位數。

第二步:4×2×2+1=17 「1」保留,「7」就是積的十位數。

第三步 :2×2+1=5 「 5」就是積的百位數.

所以24×24=576

例二、37×37

第一步:7×7=49 "4"保留,"9",就是積的個位數。

第二步:3×7×2+4=46 "4"保留,"6",就是積的十位數。

第三步 :3×3+4=13 "13"就是積的百位和千位數字。

所以:37×37=1369

(3)、接近50兩個相同因數積的口算

思維方法:比50大的兩個相同數的積等於5乘5加上個位數字,再添上個位數字的平方,(必須佔兩位,十位無數用零佔位):比50小的兩個相同數的積,等於5乘5減去個位數字的十補數,再添上個位數字十補數的平方(必須佔兩位,十位無數用零佔位)。

例1、53×53

5×5+3=28 再添上3×3=9 (必須兩位09) 等於2809

所以:53×53=2809

例2、58×58

5×5+8=33 再添上8×8=64 等於3364

所以:58×58=3364

例3、47×47

5×5-3(3是7的十補數)=22 再添上3×3=9 (必須兩位09)

等於2209

所以:47×47=2209

(4)、末位是5的兩個相同因數積的口算

思維方法:設這個數的十位數字為k,則這兩個相同因數的積就是:k×(k+1)再添上5×5=25 或者 k×(k+1)×100+25

例 1、 35×35=3×(4+1)×100+25=1225

例2、75×75=7×(7+1)×100+25=5625

兩個相同因數積的口算方法很多,這裡就不一一介紹了。我們利用兩個相同因數積的口算方法可以口算好多相近的兩個數的積。舉例如下:

例1、13×14

因為:13×13=169 再加13得182 所以 :13×14=182

或者14×14 因為:14×14=196 再減14 還得182

例2、35×37

因為:35×35=1225 再加70(2×35)得1295

所以 35×37=1295

2、首尾有規律的數的口算

(1)首同尾合十(首同尾補)

思維方法:首數加「1」乘以首數,右邊添上尾數的積(兩位數),如積是一位數,十位用零佔位。

例:76×74=(7+1)×7×100+6×4=5624

(2)尾同首合十(尾同首補)

思維方法:首數相乘加尾數,右邊添上尾數的平方(兩位數),如積是一位數,十位用零佔位。

例:76×36=(7×3+6)×100+6×6=2736

(3)一同一合十(一個數兩位數字相同,一個數兩位數字互補)

思維方法:兩個數的十位數字相乘,再加上相同數字,右邊添上兩尾數的積。如積是一位數,十位用零佔位。

例:33×64=(3×6+3)×100+3×4=2112

以上三種方法,可以用一個公式計算即:

(頭×頭+同)×100 + 尾×尾

3、利用特殊數字相乘口算

有些數字很特殊,它們的積是有規律的。

(1)7乘3的倍數或3乘7的倍數

先看看下面的幾個式子:

7×3=21 7×6=42 7×9=63

7×12=84 7×15=105 7×18=126......7×27=189

我們觀察這幾個式子被乘數都是7,乘數是3的倍數.是3的幾倍,積的個位就是幾,積的十位或者十位以上的數字始終是個位的2倍.

因此,我們可以說:7乘3的倍數,等於該倍數加該倍數的20倍.

果我們設這個倍數為n,用公式表示:7×3n=n+20n(n>0的正整如數)

例1、7×27=7×3×9=9+20×9=189

例2、7×57=7×3×19=19+20×19=398

這個結論3乘7的倍數也適用.我們用這個結論可以口算3的倍數和7的倍數的兩個數相乘.

例3、14×15=7×2×3×5=7×3×10=10+20×10=210

例4、28×36=7×4×3×12=7×3×48=48+20×48=1008

(2)、17乘3的倍數或3乘17的倍數

17乘3的倍數,等於該倍數加該倍數的50倍.(3乘17的倍數也適用)

如果我們設這個倍數為n,用公式表示:17×3n=n+50n(n>0的正整數)

例1、17×21=17×3×7=7+50×7=357

例2、17×84=17×3×28=28+50×28=1428

例3、34×24=17×2×3×8=17×3×16=16+50×16=816

(3)、17乘13的倍數或13乘17的倍數

17乘13的倍數等於該倍數加該倍數的20倍,再加200倍。

如果我們設這個倍數為n,用公式表示:17×13n=n+20n+200n(n>0的正整數)

例1、17×78=17×13×6=6+20×6+200×6=1326

例2、34×65=17×2×13×5=17×13×10=10+20×10+200×10

=2210

例3、34×78=17×2×13×6=17×13×12=12+20×12+200×12

=2652

(4)43乘7的倍數或7乘43的倍數

43乘7的倍數等於該倍數加該倍數的300倍。

如果我們設這個倍數為n,用公式表示:43×7n=n+300n(n>0的正整數)

例1、43×28=43×7×4=4+300×4=1204

例2、43×84=43×7×12=12+300×12=3612

4、兩個接近100的數相乘的口算

(1)超過100的兩個數相乘

思維方法:先把一個因數加上另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。

例1、103×104=(103+4)×100+3×4=10712

例2、112×107=(112+7)×100+12×7=11984

(2)不足100的兩個數相乘

思維方法:先從一個因數中減去另一個因數與100的差,然後在所得的結果後面添上兩個因數分別與100之差的積。

例1、92×94=(92-6)×100+8×6=8648

或者:92×94=(94-8)×100+8×6=8648

(3)一個超過100,一個不足100的兩個數相乘

思維方法:超過100的數減不足100的差,擴大100倍後,減去兩個因數分別與100之差的積。

例1、104×97=(104-3)×100-4×3=10100-12=10088

口算的技巧太多了。以上僅介紹了部分特殊口算技巧,還有利用運算定律和運算性質可以口算;利用湊整法可以口算等等。要求我們教師要熟記和掌握這些方法,關鍵只有一種:

最終近快的準確的口算出結果。

基本口算要熟練。20以內進位加減法和退位減法及表內乘除法必須達到「脫口而出」的熟練程度。因為任何一道四則計算題,都是一系列口算的綜合,如果其中有一步口算失誤,就會前功盡棄。

口算的準確和熟練程度直接制約著計算能力的培養和提高。

常用資料要熟記。計算中的常用資料如果能在理解的基礎上熟記,可以大大提高計算的準確性和速度。如4×25=100、4×75=300、8×125=1000、1÷2=0.

5、1÷4=0.25、3÷4=0.75、1÷8=0.

125(12.5%)等。

簡便口算要自覺。利用數字特徵和運算關係,應用運算定律或性質自覺地進行簡便計算,有利於培養學生思維的靈活性和敏捷性。如389+298、654-496可以利用和、差的規律進行簡算。

389+298=389+300-2=689-2=687,654-496=654-500+4=154+4=158,多加幾就減去幾;多減幾就加上幾。312×25、2700÷125可以利用積、商變化的規律進行簡算。312×25=(312÷4)×(25×4)=78×100=7800,2700÷125=(2700×8)÷(125×8)=21600÷1000=21.

6練習口算要經常。口算的練習應貫穿於教學活動的全過程,要圍繞教學內容,有針對性。有目的性低進行。

新授前練口算,「溫故知新」起到遷移的作用。新授中練口算,有利用新知的鞏固。新授後練口算,有利於形成良好的認知結構,能使學生自覺地應用運算定律或運算性質,改變原有的運算順序,使計算簡便。

口算技能要培養。在理解算理的基礎上掌握口算方法,是學習口算的第一步,也是重要的一步,但到了一定程度,就要簡化、壓縮思維過程,形成口算的技能、技巧。如有些同級算的式題,36÷7×14, 72×18÷24從表面來看無法口算,根據運算定律或預算性質,進行合理的調整以後,就可以進行口算。

36÷7×14=36×(14÷7)=36×2=72,72×18÷24=72÷24×18=3×18=54.或者改變一下運算的形式:36÷7×14=36×1÷7×14,72×18÷24=72×18×1÷24,在運算時,還可以把一些數拆成兩數的和、兩數的差、兩數的積或商,使計算簡便。

求一些建議,求一些提高公司質量的建議

感情不應該是刻意的,順其自然吧!其實,你才上高中,感情的事情不用著急的。高中時代會很孤單 寂寞,但是有知識作伴。等你上大學了,你會發覺高中的生活雖然歲枯燥乏味,但是卻是最最刻骨銘心的記憶。上大學後,一切或許會豐富多彩,或許你的愛情會盛開得更美麗!高中應該很緊張把,嘻嘻,你可能需要的不是bf,而是一個...

求一些提高英語語感的電影文章書籍

看美國電影是一個好方法。同時,床頭燈和書蟲系列的英語讀物很不錯,其實多讀,多查字典是學好英語的一個最有效的辦法。嗯 熟中生巧 多練練就提高了 去看看 緋聞女友,絕望主婦 和生活大 吧。對於聽力練習是很有用的,都是 之類的。每天看一兩集,學一下英美的日常口語表達。英文教材,課文都比較經典,讀熟甚至會背...

如何使計算機的開機速度變快一些?

怎樣能使電腦開機速度變快啊?求一個最簡單的方法 經常清理快取,登錄檔,垃圾檔案,使用痕跡 利用魯大師軟體優化一下開機啟動項,手動關閉一些不必要的開機軟體 如迅雷,qq,阿里旺旺,快車等 開始 執行 或者windows微標加r 裡面寫入 msconfig 確定,會出現一個視窗,點選啟動,選 擇下面的全...