向量法解初中數學幾何是不是萬能的?再幾個初中常用向量公式

2021-03-27 08:21:36 字數 8107 閱讀 9468

1樓:艽歌一玄儛

設a=(x,y),b=(x',y')。

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

ab+bc=ac。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0

ab-ac=cb. 即「共同起點,指向被減」

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

4、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

注:按定義知,如果λa=0,那麼λ=0或a=0。

實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)•b=λ(a•b)=(a•λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。

3、向量的的數量積

定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π

定義:兩個向量的數量積(內積、點積)是一個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。

向量的數量積的座標表示:a•b=x•x'+y•y'。

向量的數量積的運算律

a•b=b•a(交換律);

(λa)•b=λ(a•b)(關於數乘法的結合律);

(a+b)•c=a•c+b•c(分配律);

向量的數量積的性質

a•a=|a|的平方。

a⊥b 〈=〉a•b=0。

|a•b|≤|a|•|b|。

向量的數量積與實數運算的主要不同點

1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。

2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。

3、|a•b|≠|a|•|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

4、向量的向量積

定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:

∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

向量的向量積性質:

∣a×b∣是以a和b為邊的平行四邊形面積。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量積運算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量沒有除法,「向量ab/向量cd」是沒有意義的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 當且僅當a、b反向時,左邊取等號;

② 當且僅當a、b同向時,右邊取等號。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 當且僅當a、b同向時,左邊取等號;

② 當且僅當a、b反向時,右邊取等號。

定比分點

定比分點公式(向量p1p=λ•向量pp2)

設p1、p2是直線上的兩點,p是l上不同於p1、p2的任意一點。則存在一個實數 λ,使 向量p1p=λ•向量pp2,λ叫做點p分有向線段p1p2所成的比。

若p1(x1,y1),p2(x2,y2),p(x,y),則有

op=(op1+λop2)(1+λ);(定比分點向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分點座標公式)

我們把上面的式子叫做有向線段p1p2的定比分點公式

三點共線定理

若oc=λoa +μob ,且λ+μ=1 ,則a、b、c三點共線

三角形重心判斷式

在△abc中,若ga +gb +gc=o,則g為△abc的重心

[編輯本段]向量共線的重要條件

若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。

a//b的重要條件是 xy'-x'y=0。

零向量0平行於任何向量。

[編輯本段]向量垂直的充要條件

a⊥b的充要條件是 a•b=0。

a⊥b的充要條件是 xx'+yy'=0。

零向量0垂直於任何向量.

2樓:傻瓜不笨是單純

不一定,結合幾何圖形用向量求解經常要建立空間直角座標系,但有的圖形很難建立。

3樓:天空

初中就學向量法了嗎 有點超前

4樓:芒亭晚庚丙

|量外積

把向量外積定義為:|a×

b|=|a|•|b|•sin.

方向根據右手法則確定,就是手掌立在a、b所在平面的向量a上,掌心向b,那麼大拇指方向就是垂直於該平面的方向,被規定為外積的方向。

向量外積的代數運算形式為:

|e(i)

e(j)

e(k)|a

×b=|

x(a)

y(a)

z(a)||

x(b)

y(b)

z(b)

|這個行列式,按照第一行。e表示標準單位基。

分配律的幾何證明方法很繁瑣,大意是用作圖的方法驗證。有興趣的話請自己參閱參考文獻中的證明。

下面給出代數方法。我們假定已經知道了:

1)外積的反對稱性:a×

b=-b

×a.這由外積的定義是顯然的。

2)內積(即數積、點積)的分配律:

a•(b+c)

=a•b

+a•c,(a+

b)•c

=a•c

+b•c.

這由內積的定義a•b

=|a|•|b|•cos,用投影的方法不難得到證明。

3)混合積的性質:

定義(a×b)•c為向量a,

b,c的混合積,容易證明:

i)(a×b)•c的絕對值正是以a,

b,c為三條鄰稜的平行六面體的體積,其正負號由a,b,c的定向決定(右手係為正,左手係為負)。

從而就推出:

ii)(a×b)•c

=a•(b×c)

所以我們可以記a,

b,c的混合積為(a,b,c)

由i)還可以推出:

iii)

(a,b,c)=

(b,c,a)=

(c,a,

b)我們還有下面的一條顯然的結論:

iv)若一個向量a同時垂直於三個不共面矢a1,a2,a3,則a必為零向量。

下面我們就用上面的1)2)3)來證明外積的分配律。

設r為空間任意向量,在r•[a×(b

+c)]裡,交替兩次利用3)的ii)、iii)和數積分配律2),就有r•[a×(b

+c)]

=(r×a)•(b+c)

=(r×a)•b

+(r×a)•c

=r•(a×b)

+r•(a×c)

=r•(a×b

+a×c)

移項,再利用數積分配律,得

r•[a×(b+c)

-(a×b

+a×c)]=0

這說明向量a×(b+c)

-(a×b

+a×c)垂直於任意一個向量。按3)的iv),這個向量必為零向量,即a×(b+c)

-(a×b

+a×c)=0

所以有a×(b+c)

=a×b

+a×c.證畢。

空間向量中任意兩個向量的法向量公式。不要給我說別的,我只要公式,本人知道求法,只要公式!

5樓:之何勿思

法向量公式即兩個向量叉乘,設已知α=a1j+a2k+a3l,,β=b1i+b2k+b3j。

其中i,j,k是三維空間一組基向量。

令γ=α×β,即γ=|i     j      k||a1  a2   a3|

|b1  b2    b3|

γ的向量公式即是上述行列式求解。

在空間中把既有大小又有方向的量叫做空間向量,主要用於解決立體幾何問題。

法向量指的是在空間中與某平面垂直的直線的方向向量。

高中數學向量公式

6樓:

設a=(x,y),b=(x',y').

1、向量的加法

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c).

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0

ab-ac=cb.即「共同起點,指向被減」

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

4、數乘向量

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

擴充套件資料

表達方式

1、代數表示

一般印刷用黑體的小寫英文字母(a、b、c等)來表示,手寫用在a、b、c等字母上加一箭頭(→)表示,如

2、幾何表示

向量可以用有向線段來表示。有向線段的長度表示向量的大小,向量的大小,也就是向量的長度。長度為0的向量叫做零向量,記作長度等於1個單位的向量,叫做單位向量。

7樓:demon陌

設a=(x,y),b=(x',y').

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則.

ab+bc=ac.

a+b=(x+x',y+y').

a+0=0+a=a.

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c).

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.0的反向量為0

ab-ac=cb.即「共同起點,指向被減」

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

3、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣.

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意.

當a=0時,對於任意實數λ,都有λa=0.

注:按定義知,如果λa=0,那麼λ=0或a=0.

實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮.

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍.

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb).

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:

① 如果實數λ≠0且λa=λb,那麼a=b.

② 如果a≠0且λa=μa,那麼λ=μ.

4、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b.若a、b不共線,則a·b=|a|·|b·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣.

向量的數量積的座標表示:a·b=x·x'+y·y'.

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方.

a⊥b 〈=〉a·b=0.

|a·b|≤|a|·|b|.

向量的數量積與實數運算的主要不同點

1)向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.

2)向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.

3)|a·b|≠|a|·|b|

4)由 |a|=|b| ,推不出 a=b或a=-b

4、向量的向量積

定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b.若a、b不共線,則a×b的模是:

∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系.若a、b共線,則a×b=0.

向量的向量積性質:

∣a×b∣是以a和b為邊的平行四邊形面積.

a×a=0.

a∥b〈=〉a×b=0.

向量的向量積運算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量沒有除法,「向量ab/向量cd」是沒有意義的.

擴充套件資料:

向量的記法:印刷體記作粗體的字母(如a、b、u、v),書寫時在字母頂上加一小箭頭「→」。 如果給定向量的起點(a)和終點(b),可將向量記作ab(並於頂上加→)。

在空間直角座標系中,也能把向量以數對形式表示,例如oxy平面中(2,3)是一向量。

在物理學和工程學中,幾何向量更常被稱為向量。許多物理量都是向量,比如一個物體的位移,球撞向牆而對其施加的力等等。與之相對的是標量,即只有大小而沒有方向的量。

一些與向量有關的定義亦與物理概念有密切的聯絡,例如向量勢對應於物理中的勢能。

研究向量空間一般會涉及一些額外結構。額外結構如下:

1 一個實數或複數向量空間加上長度概念。就是範數稱為賦範向量空間。

2 一個實數或複數向量空間加上長度和角度的概念,稱為內積空間。

3 一個向量空間加上拓撲學符合運算的(加法及標量乘法是連續對映)稱為拓撲向量空間。

4 一個向量空間加上雙線性運算元(定義為向量乘法)是個域代數。

概念:2 向量的模:有向線段ab的長度叫做向量的模,記作|ab|;

4 相等向量:長度相等且方向相同的向量叫做相等向量;

5 平行向量(共線向量):兩個方向相同或相反的非零向量叫做平行向量或共線向量,零向量與任意向量平行,即0//a;

6 單位向量:模等於1個單位長度的向量叫做單位向量,通常用e表示,平行於座標軸的單位向量習慣上分別用i、j表示。

7 相反向量:與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

平面向量是在二維平面內既有方向(direction)又有大小(magnitude)的量,物理學中也稱作向量,與之相對的是隻有大小、沒有方向的數量(標量)。平面向量用a,b,c上面加一個小箭頭表示,也可以用表示向量的有向線段的起點和終點字母表示。

向量的模的運算沒有專門的法則,一般都是通過餘弦定理計算兩個向量的和、差的模。多個向量的合成用正交分解法,如果要求模一般需要先算出合成後的向量。模是絕對值在二維和三維空間的推廣,可以認為就是向量的長度。

推廣到高維空間中稱為範數。

向量積,數學中又稱外積、叉積,物理中稱矢積、叉乘,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量和垂直。

其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。

金錢是不是萬能的 求大神幫助

金錢雖然不是萬能的,但是沒有錢是萬萬不能的 金錢不是萬能的,但好多事沒有金錢是萬萬不能的!要正確對待金錢!不要成為金錢的奴隸!要讓金錢很好的為你服務!時間,親情,友誼,愛情,生命都是金錢買不到的 這樣的問題我回答過好多次,呵呵,我的觀點和你一樣,雖然不是拜金主義,但是錢絕不只萬種功能。這個社會的人都...

關於錢是不是萬能的辯論題材,關於金錢的辯論賽材料,反方 金錢不是萬能的

金錢不是萬能的 要知道這個世界還有銀聯卡 visa卡 關於金錢的辯論賽材料,反方 金錢不是萬能的 現實生活中,金錢的地位越來越高,高的可以放棄親情,放棄尊嚴,放棄良心。金錢淪喪了社會,毀滅了家庭,是把殺人不見血的刀,是泯滅道德的利劍。金錢是把雙刃劍,即毀了別人也傷了自己,而主宰這一切的就是心態,道德...

新概念英語教材是不是萬能的,新概念英語教材是不是萬能的?

差不多。我們老師也說,你把2,3冊全學會了,全懂了,你就可以直接去高考了 我們高一 至於你已經大4了,1.2冊是真沒什麼用,你就看看3.4冊吧,應該有用 哪能有萬能的東西啊。其實新概念這本書,是我學英語以來認為最好的一本自學英語的書,只要你好好利用它,絕對能提高你得英語水平,介紹點我的經驗給你 1 ...