1樓:滾滾愛泠兒
①(1+1)×(1+1)-3.14×12
=4-3.14
=0.86(平方分米);
答:陰影部分的面積是0.86平方分米;
②1×1÷2
=1÷2
=0.5(平方分米)
答:陰影部分的面積是0.5平方分米.
已知大正方形的邊長為8釐米,小正方形的邊長是4釐米。求陰影部分面積
2樓:我是一個麻瓜啊
32平方釐米。
解答過程如下
:(1)大正方
形的邊長為8釐米,小正方形的邊長是4釐米,表示如下:
(2)由此可得:ac=8-4=4,又因為ab是小正方形的邊長,故ab=4。
(3)根據勾股定理:可得:ac²+ab²=bc²。求得bc=4√2cm。
(4)又因為∠acb=45度,∠acd=45度,可得∠dcb=90度。
(5)dc=√(8²+8²)=8√2。
(6)陰影部分是一個直角三角形,∠c為直角。陰影部分面積=8√2×4√2×1/2=32平方釐米。
擴充套件資料:
勾股定理,直角三角形的兩條直角邊的平方和等於斜邊的平方.
a²+b²=c²
c=√(a²+b²)
√(120²+90²)=√22500=√150²=150
例如直角三角形 的三條邊是3(直角邊)、4(直角邊)、5(斜邊)
3²+4²=5²
5=√(3²+4²)=√5²=5
正方形的性質:
1、兩組對邊分別平行;四條邊都相等;鄰邊互相垂直。
2、四個角都是90°,內角和為360°。
3、對角線互相垂直;對角線相等且互相平分;每條對角線平分一組對角。
4、既是中心對稱圖形,又是軸對稱圖形(有四條對稱軸)。
5、正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,對角線與邊的夾角是45°;正方形的兩條對角線把正方形分成四個全等的等腰直角三角形。
3樓:匿名使用者
已知大正方形的邊長為8釐米,小正方形的邊長是4釐米;
陰影部分面積:
8*8-4*4
=64-16
=48(平方釐米)
4樓:上官無闕
陰影部分面積=總面積-空白部分面積
總面積=1個大正方形+1.5個小正方形
=1*8*8+1.5*4*4
=88cm2
空白部分面積=1/2*8*8+1/2*(8+4)*4=56cm2
所以陰影部分面積=總面積-空白部分面積
=88-56
=32cm2
5樓:匿名使用者
圖中所示:尺寸單位為mm
求大正方形對角線長度=80/sin45
求小正方形對角線長度=40/sin45
三角形面積公式=1/2底x高
所以圖中陰影部分面積=1/2x(40/sin45x80/sin45)求解:3200平方毫米=32平方釐米
6樓:天雨下凡
陰影面積=8²÷2+4²-(8+4)×4÷2+(8-4)×4÷2
=32+16-24+8
=32(平方釐米)
7樓:毛秀才嗎
如圖,把圖補全,好做一些。
8樓:匿名使用者
8²÷2+4²-(8+4)×4÷2+(8-4)×4÷2
=32+16-24+8
=32(平方釐米)
9樓:過來坑人滴
8*2/3*8/2+4*4/2+4/3*4/2=64/3+8+8/3
=24+8=32
求下面各個圖形中陰影部分的面積(單位 dm
兩道題都可以用相減法來求解,用原圖形的面積減去空白部分的面積就可以得到陰影部分的面積。圖1 原圖形梯形面積s 梯 6 12 8 2 72dm 空白部分平行四邊形面積s 平 6 8 48dm 陰影部分面積s 陰 s 梯 s 平 72 48 24dm 答 陰影部分面積s 陰 24dm 圖2 原圖形梯形面...
求陰影面積(單位 cm),求陰影部分的面積。(單位 cm)
1圖陰影面積是 3.14 8 4 2 2 3.14 4 2 2 3.17 8 2 2 3.14 6 2 3.14 2 2 3.14 4 2 56.52 6.28 25.12 25.12 分析 大半圓面積減空白小半圓面積再減空白大半圓面積。2圖陰影面積 3.14 4 2 2 4 4 25.12 16 ...
求下面圖形中陰影部分的面積是半圓直徑是10,中間有個等腰三角形
解 半圓面積3.14 5 5 78.5 等腰三角形面積 5 5 2 12.5 若求的是三角形陰影面積即是12.5 若求減去三角形即為78.5 12.5 66 滿意望採納 沒見圖呀,請上圖!圖中半圓直徑是10釐米,求陰影部分的面積 3.14 102 2 10 10 2 2,3.14 25 2 10 5...