數學是什麼, 在數學裡是什麼意思

2021-04-20 14:55:12 字數 5651 閱讀 1460

1樓:windy晴空

數學(抄mathematics或maths,來自希臘語,襲「máthēma」;經常被縮寫為bai「math」),是

du研究數量、結構、變化、空間以zhi及資訊等概念dao的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切範圍和定義有一系列的看法。

而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

!在數學裡是什麼意思

2樓:月下者

!在數學裡是階乘符號。一個正整數的階乘是所有小於及等於該數的正整數的積,並且有0的階乘為1。

亦即n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。

階乘亦可定義於整個實數(負整數除外),其與伽瑪函式的關係為:

n!可質因子分解為,如6!=24×32×51。

擴充套件資料

階乘函式:

一個正整數的階乘(英語:factorial)是所有小於及等於該數的正整數的積,並且有0的階乘為1。自然數n的階乘寫作n!。2023年,基斯頓·卡曼引進這個表示法。

亦即n!=1×2×3×...×n。階乘亦可以遞迴方式定義:0!=1,n!=(n-1)!×n。

階乘亦可定義於整個實數(負整數除外),其與伽瑪函式的關係為:

n!可質因子分解為

,如6!=2×3×5。

3樓:老了不死

階乘【階乘的計算方法】

[編輯本段]

階乘指從1乘以2乘以3乘以4一直乘到所要求的數。

例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。 例如所要求的數是6,則階乘式是1×2×3×……×6,得到的積是720,720就是6的階乘。例如所要求的數是n,則階乘式是1×2×3×……×n,設得到的積是x,x就是n的階乘。

【階乘的表示方法】

[編輯本段]

在表達階乘時,就使用「!」來表示。如x的階乘,就表示為x!

【20以內的數的階乘】

[編輯本段]

階乘一般很難計算,因為積都很大。

以下列出1至20的階乘:

1!=1,

2!=2,

3!=6,

4!=24,

5!=120,

6!=720,

7!=5040,

8!=40320

9!=362880

10!=3628800

11!=39916800

12!=479001600

13!=6227020800

14!=87178291200

15!=1307674368000

16!=20922789888000

17!=355687428096000

18!=6402373705728000

19!=12164510040883200020!=2432902008176640000另外,數學家定義,0!=1,所以0!=1!

4樓:原桂花石雨

你好,!就是階層的意思

舉個例子4!=4*3*2*1=24

3!=3*2*1=6

就是說你看到一個數字後面有個!,就把它*比它小一位數得數,直到1為止另外0!=1

5樓:今生一萬次回眸

在數學中,「有意義」指的是在定義限制的範圍之內,符合規定、要求或限制。

例如:(1)分數或分式的分母以及除數要求不能為「0」。如果分數或分式的分母以及除數為「0」了,就違反了分數或分式的規定,就是「無意義」的;反之,分數或分式的分母以及除數不是「0」就是符合規定的,就是「有意義」的;

(2)在實數範圍內,二次根式要求被開方數不能為負數(即只能是非負數——正數和0)。如果二次根式的被開方數為負數了,就違反了在實數範圍內二次根式被開方數的規定,就是「無意義」的;反之,二次根式的被開方數不是負數,就是符合規定的,就是「有意義」的。

6樓:匿名使用者

i是一個虛數單位,具體的學習出現在高中數學中。可以指不實的數字或並非表明具體數量的數字

7樓:車大炮

是階乘的符號

例如1!=1

2!=2*1=2

3!=3*2*1=6等等

8樓:匿名使用者

!是階乘符號,比如n=1乘,二乘,3

9樓:聖劍一瞬

這個表示階乘,如5!=5×4×3×2×1

a!=a×(a-1)×(a-2)×...×3×2×1

10樓:sports曉意

階乘.比如5!=5*4*3*2*1=120.

數學建模是什麼?

11樓:寶寶

在我的理解:

數學建模就是指對於一個現實物件,為了一個特定目的,根據其內在規律,作出必要的簡化假設,運用適當的數學工具,得到的一個數學結構。他的意義在於利用數學方法解決實際問題。

如果想要學好數學建模必須學習:高數,線性代數,c語言,還涉及到模糊數學(部分),同時在建模過程中學會matlab和lingo等軟體的使用。能夠培養一個人的開發能力和自主學習能力,還是很有用處的。

數學模型(姜啟源、謝金星)  很適合新手,在內容編排上也是國產風格,按模型知識點分類,一塊一塊講,面面俱到。

數學建模方法與分析.(紐西蘭)mark.m.meerschaert   它是典型的外國教材風格,從一個模型例子開始,娓娓道來,跟你講述數學建模的方方面面,其中反覆強調的一個數學建模五步法,後來細細體會起來的確很有道理,看完大部分這本書的內容,就可以體會並應用這個方法了。

12樓:匿名使用者

現在幾乎所有工科,還有一些人文社科,如果你讀到博士,就會發現裡面有各種數學模型。例如

1. 人口增長模型。本來我們只是觀察到一個村落,沒有外界影響,人會慢慢變多。

那只是最粗略的觀察。後來發現人的增長速度大致跟人的基數有關係,就可以用常微分方程描述成一個動態系統。我們就可以知道人口會成指數增長。

後來又發現不完全對,當人口到達一定水平,資源不夠,人的增長就會受到限制,於是給我們的模型添一項修正,再研究新模型發現,噢,原來如果受到資源限制,最終人口會停在某個水平。隨著我們觀察到更多,我們可以把觀察到的翻譯成數學語言「添」到舊模型,就可以得到更多數學結果,翻譯回來,我們對人口增長這個問題就能得到更多認識。

2. 德州撲克(或者其他撲克遊戲)。這個涉及多個玩家,每個玩家都要最大化自己利潤,所以可以模擬成game(博弈)。

而由於翻牌的時候帶有不確定性(不知道下一張翻出來的牌是什麼),所以這是一個隨機的過程。現在大家都用馬爾科夫博弈來建模。建完模能怎樣?

賺錢算不算一個用處?現在已經有很多德州撲克的軟體很牛。有軟體可以確保在一對一的時候打敗人類,但是多人局還不行,計算需要的時間還太長。

3. 懷孕**。target在美國是家大超市,他們有所有消費者的記錄。

通過一些統計分析,他們發現某個女孩極可能最近剛懷孕,於是給她推銷相關產品。數學模型在**?這裡的模型就是女孩懷孕概率和各項女孩的消費行為的定量關係。

4. 撲克牌相關的一些魔術。經常會有人通過撲克牌來表演魔術,而有些魔術不需要手快,不需要障眼法,不需要道具,只需要數學(或者說概率)。

通過某些步驟,有些人可以讓下一張翻出的牌是你想要的牌的概率極高。berkeley有個數學教授就專門研究這個,cool爆了!

5. 音訊處理。前一陣子不是老在聊「我是歌手」和「中國好聲音」的修音問題嗎?

修音也跟數學建模有關係。一段**可以被看成一段訊號,有頻率,有振幅。我們可以把它model成一些波的疊加。

這樣建模以後我們就可以很方便地做一些**修改了。例如低音太難聽了,要把它去掉,那就弄走低頻的一些波。要再加入一段伴奏,那就在原來的波上再疊加一段新的代表伴奏的波。

這裡蜻蜓點水寫了幾個。其實還有挺多好玩的,開個專欄都可以了。by the way,現在還有不少人用數學研究神學和哲學,你們可以到coursera網路課程上搜到。

數學建模其實就是用數學語言把現實問題「翻譯」成數學問題。

13樓:女的沒心沒肺

模型是為了一定目的,對客觀事物的一部分進行簡縮、抽象、提煉出來的原型的替代物,集中反映了原型中人們需要的那一部分特徵。

數學建模就是指對於一個現實物件,為了一個特定目的,根據其內在規律,作出必要的簡化假設,運用適當的數學工具,得到的一個數學結構,其意義在於用數學方法解決實際問題。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、瞭解物件資訊、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

數學模型可以描述為:對於現實世界的一個特定物件,為了一個特定目的,根據特有的內在規律,做出一定的必要假設,然後運用恰當的數學工具得到的一個數學結構。

這樣,在一定抽象並且簡化的基礎之上得到的一個數學結構,也就是數學模型,可以幫助人們更加深刻地認識所研究的物件。

比方說,我們所研究的物理學,尤其是應用在工程上面的物理學,比如電路,理論力學,材料力學這些,就是對數學建模的一個很好直觀的例子。

14樓:匿名使用者

數學建模:就是通過計算得到的結果來解釋實際問題,並接受實際的檢驗,來建立數學模型的全過程。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、瞭解物件資訊、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

數學模型(mathematical model)是一種模擬,是用數學符號,數學式子,程式,圖形等對實際課題本質屬性的抽象而又簡潔的刻劃,它或能解釋某些客觀現象,或能**未來的發展規律,或能為控制某一現象的發展提供某種意義下的最優策略或較好策略。數學模型一般並非現實問題的直接翻版,它的建立常常既需要人們對現實問題深入細微的觀察和分析,又需要人們靈活巧妙地利用各種數學知識。這種應用知識從實際課題中抽象、提煉出數學模型的過程就稱為數學建模(mathematicalmodeling)。

不論是用數學方法在科技和生產領域解決哪類實際問題,還是與其它學科相結合形成交叉學科,首要的和關鍵的一步是建立研究物件的數學模型,並加以計算求解(通常藉助計算機);數學建模和計算機技術在知識經濟時代的作用可謂是如虎添翼。

15樓:匿名使用者

我對數學建模的理解是:一個模型,越能符合實際,越能解決實際問題,應當就是好的模型。需要用到數學知識。

可能是很簡單的數學知識,可能是很繁複的數學知識。建立模型有幾個目的,風險控制,收益控制等目的。

16樓:西tomato紅柿

數學建模的詳細定義網上多的我就不闡述了,說一點其他的~~

數學的主要發展方向是數學結合計算機。運用數學的演算法結合計算機技術解決實際問題,將來你會比單純學計算機的水平高出一個檔次,因為你的演算法比他們的先進。而這也就是數學建模競賽的主要考察的。

數模比賽的含金量也是比較高的,你參加比賽得了名次,完全可以證明你是有一定實力的~~

你擔心數學成績不好,其實是沒有必要的,我參加過幾次比賽,用的數學知識並沒有很高深,高中數學也能解決很多問題了,主要就是優化,模擬,我覺得考驗個人思維能力多一點,況且數學、計算機、寫作三個方面呢,你只要有一方面特長就可以了~~

如果你去參加比賽,真的會給你很多收穫,學到很多新知識不談,還會讓你瞭解原來學的東西可以這麼用在生活中,會提起學習的興趣,真的,我強烈建議你去學一些~~參加比賽~~如果還有其他問題你可以問的呵呵~~~我建模和寫作都弄過,程式設計差點~~

8在數學中是什麼意思在數學裡是什麼意思

樓上 紫燕飛舞cd 說得對。就是8的階乘,再階乘。解出來就是 8!40320 40320!3.4343594927610057460299569794489e 168186 是個好大的天文數字哦!算得計算器都快燒掉了。兩個驚歎號是雙階乘的意思 一個正整數的雙階乘計算如下 2n!2 4 2n 當正整數...

在數學裡是什麼意思在數學中表示什麼意思?

在數學裡是階乘符號。一個正整數的階乘是所有小於及等於該數的正整數的積,並且有0的階乘為1。亦即n 1 2 3 n。階乘亦可以遞迴方式定義 0 1,n n 1 n。階乘亦可定義於整個實數 負整數除外 其與伽瑪函式的關係為 n 可質因子分解為,如6 24 32 51。擴充套件資料 階乘函式 一個正整數的...

m數學中是什麼意思,m在數學裡是什麼意思

m的絕對值。在數軸上m到原點0的距離。m 是非負數 m的絕對值,即對m取正值,如m 3,則絕對值為3 m 的絕對值,即 數m到原點的距離 絕對值,或者不大於m的最大整數。m的絕對值吧,如果有其他含義就不知道了 m的絕對值,當m大於0時 m m 當m小於0時 m m 當m等於0時 m 0 m 是正負m...