1樓:匿名使用者
向量與向量相乘,用叉乘。向量與數相乘,用點乘。數與數相乘,用點乘。
高數中向量什麼時用點乘什麼時候用叉乘具體什麼時候
2樓:匿名使用者
具體問題具體分析,不過發現一般a•b用點乘axb用叉乘,但也比一定還是要看具體的用途比如選擇題求(axb)•c如果結果是一個數,就需要小括號裡用叉乘,小括號外邊用點乘,結果如果是一個向量的話,肯定都要用叉乘
3樓:
點乘得到的就是標量,做功等於fscosa,就是這樣定義的。叉乘得到的是向量,方向和前兩個垂直,常見的是f=lb×v,力的方向和b、和v垂直。
4樓:匿名使用者
看你要幹啥啊。
點乘和叉乘,得到不同東西的。理解各自的用途在因地制宜。哪有機械的記憶什麼地方用什麼的。
數學裡點乘和叉乘有什麼區別嗎?
5樓:匿名使用者
點乘是向量的內積,叉乘是向量的外積。
點乘:也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos表示a,b的夾角
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘:也叫向量的外積、向量積.顧名思義,求下來的結果是一個向量,記這個向量為c。
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
當向量a和b不平行的時候
其模的大小為 |a×b|=|a|·|b|·sin(實際上是ab所構成的平行四邊形的面積) 方向為 a×b和a,b都垂直 且a,b,a×b成右手系
當a和b平行的時候,結果為0向量。
6樓:一頭龍舟
有區別點乘
在數學中,數量積(dot product; scalar product,也稱為點積)是接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。[1]
兩個向量a = [a1, a2,..., an]和b = [b1, b2,..., bn]的點積定義為:
a·b=a1b1+a2b2+......+anbn。
使用矩陣乘法並把(縱列)向量當作n×1 矩陣,點積還可以寫為:
a·b=a^t*b,這裡的a^t指示矩陣a的轉置。
2.叉乘
向量積,數學中又稱外積、叉積,物理中稱矢積、叉乘,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量和垂直。
其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。
7樓:阿胡
「向量」又叫「向量」
dot product——點乘。
符號用「·」
點乘比較簡單,是相應元素的乘積的和: v1( x1, y1) v2(x2, y2) = x1*x2 + y1*y2 注意結果不是一個向量,而是一個標量(scalar)。
向量的點乘,也叫「向量的內積」或「數量積」。它的結果是個標量,不具有方向性。計算公式:
「向量a·向量b=|a||b|cosβ 」其中|a|為向量a的數值大小,|b|為向量b的數值大小,β 為兩向量方向之夾角。
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
(三維向量的點乘)
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則向量a·向量b=a1a2+b1b2+c1c2 (即對應座標之積之和!)
cross product——叉乘
符號用「×」
2維空間中的叉乘是: v1(x1, y1) x v2(x2, y2) = x1y2 – y1x2 看起來像個標量,事實上叉乘的結果是個向量,方向在z軸上。上述結果是它的模。
向量的叉乘,也叫「向量的外積」或「向量積」。它的結果是個向量,假設為向量c。計算公式:
「|向量c|=|向量a×向量b|=|a||b|sinβ 」其中|a|為向量a的數值大小,|b|為向量b的數值大小,β 為向量a到向量b的角度,有正負之分。
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為向量a×向量b= - 向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
另外還有一個有用的特徵那就是叉積的絕對值就是a和b為兩邊說形成的平行四邊形的面積。也就是ab所包圍三角形面積的兩倍。在計算面積時,我們要經常用到叉積。
(三維向量的叉乘)
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
向量中的點乘和叉乘有什麼區別
8樓:匿名使用者
點乘是內積,考慮向量夾角;叉乘是外積,不考慮向量夾角
9樓:西域牛仔王
點乘的結果是數,叉乘的結果仍是向量
向量點乘和叉乘先進行哪個
10樓:匿名使用者
點乘後得到數值,不能再進行叉乘,如果你要做複合計算,肯定先叉乘
物理的向量和數學向量有什麼區別?但為什麼在數學中運算向量點乘時要是'模長 15
11樓:匿名使用者
數學中的向量與物理中的向量是同一個東西在不同學科的叫法。
關於第二個運算問回題:
在物理答中不是不用,是公式裡已經展現或兩個向量同向。
例如:公式裡已經展現的:做功中w=f*v,若f與v不在同一直線,則乘上了cos夾角
而向量叉乘在高中數學中並不涉及,但在物理中在電磁學中被簡化理解。
12樓:匿名使用者
名稱雖然不同,但是一樣的,
物理中當然也需要。
向量的點乘和叉乘的區別.詳細點.高手進 20
13樓:匿名使用者
1、表示意義不
同:點乘是向量的內積。
叉乘是向量的外積。
2、結果單位不同:
點乘,結果是一個向量在另一個向量方向上投影的長度,是一個標量。
叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。
3、計算方法不同:
點乘,公式:a * b = |a| * |b| * cosθ
叉乘,公式:a ∧ b = |a| * |b| * sinθ
點乘又叫向量的內積、數量積,是一個向量和它在另一個向量上的投影的長度的乘積。
該定義只對二維和三維空間有效。
這個運算可以簡單地理解為:
在點積運算中,第一個向量投影到第二個向量上(這裡,向量的順序是不重要的,點積運算是可交換的),然後通過除以它們的標量長度來「標準化」。
這樣,這個分數一定是小於等於1的,可以簡單地轉化成一個角度值。
叉乘的幾何意義及其運用
叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。
據此有:混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。
14樓:冰雨人生
用"*"表示點乘符號,(a,b)表示向量a與向量b的夾角向量的點乘積是一個數
a*b=|a|×|b|×coc(a,b)
向量的叉乘積是一個向量,它的模是
|a×b|=|a|×|b|×sin(a,b)它的方向按右手定則判定:彎曲右手手掌(稱讚別人時所做的動作),拇指向外,另外四指彎曲的方向與從a到b的轉角方向相同,拇指所指的方向即是a×b的方向.
15樓:匿名使用者
向量的點積:
假設向量u(ux, uy)和v(vx, vy),u和v之間的夾角為α,從三角形的邊角關係等式出發,可作出如下簡單推導:
|u - v||u - v| = |u||u| + |v||v| - 2|u||v|cosα
===>
(ux - vx)2 + (uy - vy)2 = ux2 + uy2 +vx2+vy2- 2|u||v|cosα
===>
-2uxvx - 2uyvy = -2|u||v|cosα
===>
cosα = (uxvx + uyvy) / (|u||v|)
這樣,就可以根據向量u和v的座標值計算出它們之間的夾角。
定義u和v的點積運算: u . v = (uxvx + uyvy),
上面的cosα可簡寫成: cosα = u . v / (|u||v|)
當u . v = 0時(即uxvx + uyvy = 0),向量u和v垂直;當u . v > 0時,u和v之間的夾角為銳角;當u . v < 0時,u和v之間的夾角為鈍角。
可以將運算從2維推廣到3維。
向量的叉積:
假設存在向量u(ux, uy, uz), v(vx, vy, vz), 求同時垂直於向量u, v的向量w(wx, wy, wz).
因為w與u垂直,同時w與v垂直,所以w . u = 0, w . v = 0; 即
uxwx + uywy + uzwz = 0;
vxwx + vywy + vzwz = 0;
分別削去方程組的wy和wx變數的係數,得到如下兩個等價方程式:
(uxvy - uyvx)wx = (uyvz - uzvy)wz
(uxvy - uyvx)wy = (uzvx - uxvz)wz
於是向量w的一般解形式為:
w = (wx, wy, wz) = ((uyvz - uzvy)wz / (uxvy - uyvx), (uzvx - uxvz)wz / (uxvy - uyvx), wz)
= (wz / (uxvy - uyvx) * (uyvz - uzvy, uzvx - uxvz, uxvy - uyvx))
因為:ux(uyvz - uzvy) + uy(uzvx - uxvz) + uz(uxvy - uyvx)
= uxuyvz - uxuzvy + uyuzvx - uyuxvz + uzuxvy - uzuyvx
= (uxuyvz - uyuxvz) + (uyuzvx - uzuyvx) + (uzuxvy - uxuzvy)
= 0 + 0 + 0 = 0
vx(uyvz - uzvy) + vy(uzvx - uxvz) + vz(uxvy - uyvx)
= vxuyvz - vxuzvy + vyuzvx - vyuxvz + vzuxvy - vzuyvx
= (vxuyvz - vzuyvx) + (vyuzvx - vxuzvy) + (vzuxvy - vyuxvz)
= 0 + 0 + 0 = 0
由此可知,向量(uyvz - uzvy, uzvx - uxvz, uxvy - uyvx)是同時垂直於向量u和v的。
為此,定義向量u = (ux, uy, uz)和向量 v = (vx, vy, vz)的叉積運算為:u x v = (uyvz - uzvy, uzvx - uxvz, uxvy - uyvx)
上面計算的結果可簡單概括為:向量u x v垂直於向量u和v。
根據叉積的定義,沿x座標軸的向量i = (1, 0, 0)和沿y座標軸的向量j = (0, 1, 0)的叉積為:
i x j = (1, 0, 0) x (0, 1, 0) = (0 * 0 - 0 * 1, 0 * 0 - 1 * 0, 1 * 1 - 0 * 0) = (0, 0, 1) = k
同理可計算j x k:
j x k = (0, 1, 0) x (0, 0, 1) = (1 * 1 - 0 * 0, 0 * 0 - 0 * 1, 0 * 0 - 0 * 0) = (1, 0, 0) = i
以及k x i:
k x i = (0, 0, 1) x (1, 0, 0) = (0 * 0 - 1 * 0, 1 * 1 - 0 * 0, 0 * 0 - 0 * 0) = (0, 1, 0) = j
由叉積的定義,可知:
v x u = (vyuz - vzuy, vzux - vxuz, vxuy - vyux) = - (u x v)
英語中什麼時候用逗號什麼時候用連詞什麼時候用句號
逗號要在一個句子之中,起連線作用 連詞,得看句子中的成分 句號就是一句話完結就可以用 逗號就是一句話還沒有表達完整,或是並列的幾個詞語等都用逗號。連詞主要看個人的喜好,and then等等這種都是根據口語需要,覺得順口自然就接下來了。句號就是表示一句話說完,或是要表達的某個意思告一段落用句號。英語並...
高數中對於抽象函式,什麼時候可以用求導公式,什麼時候用定義
初等函式的求導可用求導公式,而對非初等函式往往要用定義。高數老師說求某點處的導數必須用定義來求,這是什麼意思啊?為什麼啊?用定義bai來求導數時,一du般式對抽象函zhi數而言的,比如f x 沒有表達 dao式,而加一些專其他的條件 屬,求在一點的值,那麼只能用定義來求導數了,而不能用其他方法,老師...
向量中的點乘和叉乘有什麼區別點乘和叉乘的區別
點乘即數量積,記作a b 其中a b a b cos a b 是兩向量的模,是兩向量之間的夾角 0 以上a與b均為向量 叉乘是向量積,記作a b,a b a b sin 其中 a b 是兩向量的模,是兩向量之間的夾角 0 以上a與b均為向量 點乘是內積,是數值,一個向量在另一個向量上的投值值。叉乘是...