1樓:匿名使用者
點乘即數量積,記作a·b;其中a·b=|a|·|b|cosθ,|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。以上a與b均為向量
叉乘是向量積,記作a×b,a×b=|a|·|b|sinθ,其中|a|、|b|是兩向量的模,θ是兩向量之間的夾角(0≤θ≤π)。以上a與b均為向量
2樓:匿名使用者
點乘是內積,是數值,一個向量在另一個向量上的投值值。
叉乘是向量積,按右手法則得到一個向量(右手伸開的四指從一個向量握向另一個向量,大拇指的方向就是叉乘向量的方向),與相乘的二個向量都垂直。
3樓:寧亭蹇曉星
分清點乘和叉乘
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i
jk||a1b1
c1||a2
b2c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
點乘和叉乘的區別
4樓:阿樓愛吃肉
一、兩者的運算結果不同;
1、點乘的運算結果:得到的結果為一個標量。
2、叉乘的運算結果:為一個向量而不是一個標量。
二、兩者的應用範圍不同:
1、點乘的應用範圍:線性代數。
2、叉乘的應用範圍:其應用也十分廣泛,通常應用於物理學光學和計算機圖形學中。
三、兩者的概述不同:
1、點乘的概述:點積在數學中又稱數量,積是指接受在實數r上的兩個向量並返回一個實數值標量的二元運算。它是歐幾里得空間的標準內積。
2、叉乘的概述:一種在向量空間中向量的二元運算,並且兩個向量的叉積與這兩個向量和垂直。
5樓:諾闊華逸仙
向量的乘法有兩種,分別成為內積和外積.
內積也稱數量積,因為其結果為一個數(標量)向量a,b的內積為|a|*|b|cos,其中表示a與b的夾角
向量外積也叫叉乘,其結果為一個向量,方向是按右手系垂直與a,b所在平面|a|*|b|sin
6樓:匿名使用者
點乘(a,
b,c)點乘(e,f,g)=ae+bf+cg,向量對應元素的乘積的求和,是一個數叉乘(a,b,c)叉乘(e,f,g)=(bg-cf,-ag+ce,af-be),是一個向量,具體做法是將兩個向量分別作為一個3乘3矩陣的第二行跟第三行,第一列為方向向量(x,y,z),將矩陣按第一行,(bg-cf)x+(-ag+ce)y+(af-be)z ,因此答案為(bg-cf,-ag+ce,af-be)。
7樓:下次重出江湖
你可以把向量點乘看做是一個向量在另一個向量上投影長度相乘,也就是一個數。
座標下,也是這個意義。只不過有時候用座標還挺簡單的計算方法
碼字不易,望採納。謝謝
向量的點乘和叉乘的區別,舉個例子,謝謝! 5
8樓:匿名使用者
一、運算結果不同:
叉乘運算結果是一個向量而不是一個標量。並且兩個向量的叉積與這兩個向量和垂直。點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。
二、應用不同:
1、點乘:平面向量的數量積a·b是一個非常重要的概念,利用它可以很容易地證明平面幾何的許多命題,例如勾股定理、菱形的對角線相互垂直、矩形的對角線相等等。
2、在物理學光學和計算機圖形學中,叉積被用於求物體光照相關問題。求解光照的核心在於求出物體表面法線,而叉積運算保證了只要已知物體表面的兩個非平行向量(或者不在同一直線的三個點),就可依靠叉積求得法線。
三、幾何意義不同:
1、點積(也叫內積)結果 為 x1 * x2 + y1 * y2 = |a||b| cos,可以理解為向量a在向量b上投影的長度乘以向量b的長度。
2、叉積(也叫外積)的模為 x1 * y2 - x2 * y1 = |a||b| sin,可以理解為平行四邊形的有向面積(三維以上為體積)。外積的方向垂直於這兩個方向。
9樓:匿名使用者
你好!很高興為你答疑解惑。
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=
| i j k|
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
我的回答你還滿意嗎?望採納,謝謝!
向量的點乘和叉乘有什麼區別?什麼是右手定則
10樓:匿名使用者
用"*"表示點乘符號,(a,b)表示向量a與向量b的夾角向量的點乘積是一個數
a*b=|a|×|b|×coc(a,b)
向量的叉乘積是一個向量,它的模是
|a×b|=|a|×|b|×sin(a,b)它的方向按右手定則判定:彎曲右手手掌(稱讚別人時所做的動作),拇指向外,另外四指彎曲的方向與從a到b的轉角方向相同,拇指所指的方向即是a×b的方向.
11樓:匿名使用者
點乘 dot product
[編輯本段]
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則 向量a·向量b=a1a2+b1b2+c1c2
叉乘 cross product
[編輯本段]
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為向量a×向量b= - 向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則 向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
12樓:☆逍遙若水
向量一定要點乘,
叉乘是針對向量的!
右手定則是:
對於一個向量的叉乘,我們定義
a×b=c
注意a和b的順序不能搞反
讓向量a的方向沿手背,向量b沿四手指的指向,那麼向量c的方向就是翹起大拇指的方向(垂直於a,b形成的平面)
這就是右手定則!
向量之間的點乘和叉乘有什麼區別
13樓:匿名使用者
兩個不同的向量乘法。
14樓:一山難容二虎嘎
點乘:a.b=|a|*|b|cosθ
叉乘:axb=|a|*|b|sinθ
(a、b均為向量 θ為a、b向量的夾角)
15樓:喜楚慕胭
有,點乘的結果是一代數,而叉乘的結果是一向量.
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos
在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為
向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a·向量b=a1a2+b1b2+c1c2向量a×向量b=|i
jk||a1b1
c1||a2
b2c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
向量中的點乘和叉乘有什麼區別
16樓:匿名使用者
點乘是內積,考慮向量夾角;叉乘是外積,不考慮向量夾角
17樓:西域牛仔王
點乘的結果是數,叉乘的結果仍是向量
點乘和叉乘的區別是什麼?
18樓:匿名使用者
點乘是向量的內積 叉乘是向量的外積
點乘,也叫數量積。結果是一個向量在另一個向量方向上投影的長度,是一個標量。
叉乘,也叫向量積。結果是一個和已有兩個向量都垂直的向量。
19樓:0914菜菜
|區別:
點乘是向量的內積 叉乘是向量的外積。
點乘:點乘的結果是一個實數 a·b=|a|·|b|·cos叉乘:叉乘的結果是一個向量
20樓:匿名使用者
點乘也叫數量積,是向量的內積,結果是一個向量在另一個向量方向上投影的長度,是一個標量。叉乘也叫向量積,是向量的外積,結果是一個和已有兩個向量都垂直的向量。
數學裡點乘和叉乘有什麼區別嗎點乘和叉乘的區別是什麼
點乘是向量的內積,叉乘是向量的外積。點乘 也叫向量的內積 數量積。顧名思義,求下來的結果是一個數。向量a 向量b a b cos表示a,b的夾角 在物理學中,已知力與位移求功,實際上就是求向量f與向量s的內積,即要用點乘。叉乘 也叫向量的外積 向量積.顧名思義,求下來的結果是一個向量,記這個向量為c...
向量叉乘的意義,向量的點乘叉乘有什麼意義
叉乘,也叫向量的外積 向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。向量c 向量a 向量b a b sin向量c的方向與a,b所在的平面垂直,且方向要用 右手法則 判斷 用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向 因此 向量...
如果a向量點乘b向量0,a向量叉乘c向量等於0,為什麼b點乘c向量不一定等於
若a是 零向量 則條件能成立,但b點乘c不一定等於零。就像 0 3 0 0 4 0,但 3 4 0是 一樣 的道理。a向量叉乘b向量 點乘c向量為什麼等於 b向量叉乘c向量 a向量點乘 混合積具有輪換對稱性 a,b,c b,c,a c,a,b a,c,b c,b,a b,a,c a向量叉乘以a向量為...