求答案一筐雞蛋1拿答案是什麼怎麼算

2021-05-21 18:11:40 字數 5801 閱讀 1972

1樓:希實邢雙

一筐雞蛋:

1個bai1個拿

du,正好拿完。

2個2個拿zhi,還剩dao1個。

3個3個拿,版正好拿完

權。4個4個拿,還剩1個。

5個5個拿,還剩4個。

6個6個拿,還剩3個。

7個7個拿,正好拿完。

8個8個拿,還剩1個。

9個9個拿,正好拿完。

問筐裡有多少雞蛋?

設n為非負整數。

1、3、7、9正好拿完,說明被1、3、7、9整除,因為1、3、7、9最小公倍數63,所以這個數可以是63n。

2、4、8剩1,說明除以2、4、8餘1,因為2、4、8最小公倍數8,所以(63n)除以8餘1,n除以8餘7,n最小為7,所以63n最小值是441,又因為8和63最小公倍數是504,所以這個數可以是(441+504n)。

6剩3,說明除以6餘3,也就是除以2餘1,條件和上面重複。

5剩4,說明除以5餘4,所以(441+504n)除以5餘4,n最小為2,所以(441+504n)最小值為1449,又因為5和504最小公倍數是2520,所以這個數可以是(1449+2520n)。

雞蛋最小值為1449個,此後每加2520個也可以滿足要求。

請採納,謝謝!

2樓:紹悅完紫南

示例:一筐雞蛋:1個1個拿,

正好拿完。2個2個拿,還剩1個。3個專3個拿,正

屬好拿完。4個4個拿,還剩1個。5個5個拿,還剩1個。

6個6個拿,還剩3個。7個7個拿,正好拿完。8個8個拿,還剩1個。

9個9個拿,正好拿完。問筐裡最少有多少雞蛋?

答案以及分析:

筐裡最少有441雞蛋。

1、根據1個1個拿,正好拿完;3個3個拿,正好拿完;7個7個拿,正好拿完;9個9個拿,正好拿完。說明雞蛋個數是7和9的公倍數,再2個2個拿,還剩1個,說明雞蛋個數是7和9的公倍數且不是偶數。符合此條件的雞蛋個數,可能是63、189、315、441、……

2、根據2個2個拿,還剩1個;4個4個拿,還剩1個;5個5個拿,還剩1個;8個8個拿,還剩1個。說明雞蛋個數是比5和8的公倍數多1個。符合此條件的雞蛋個數,可能是41、81、121、161、201、241、281、321、361、401、441、……

符合上述兩個條件的最小數是441,因為441÷6=73……3,符合6個6個拿,還剩3個的條件。

所以,綜上所述,筐裡最少有441雞蛋。

求答案 ? 一筐雞蛋: 1個1個拿,正 求答案 ? 一筐雞蛋: 1個1個拿

3樓:豈不思

筐裡至少有1449個雞蛋。

驗證:1個拿,1449…………拿完

專2個拿,1449÷2=724…………餘

屬13個拿,1449÷3=483…………拿完4個拿,1449÷4=362…………餘1個5個拿,1449÷5=289…………餘4

6個拿,1449÷6=241…………餘3

7個拿,1449÷7=207…………拿完

8個拿,1449÷8=181…………餘1

9個拿,1449÷9=161…………拿完

演算法:3、7、9都拿完,一定是這三個數的最小公倍數為63。

若滿足其它數的條件,又必須個位是9的一個數。即:

63×n,n=3、13、23…………將得數逐個驗證。

當n=23時,63×23=1449,經驗證符合題意。

求答案 ? 一筐雞蛋: 1個1個拿,正好拿完。 2個2個拿,還剩1個。 3個3個

4樓:beling不琳

答:筐裡有1449+2520*n (n是0和正整數) 個雞蛋

解題過程如下:

3、7、9正好拿完,說明被1、3、7、9整除,因為1、3、7、9最小公倍數63,所以這個數可以是63n。

4、8剩1,說明除以2、4、8餘1,因為2、4、8最小公倍數8,所以(63n)除以8餘1,n除以8餘7,n最小為7,所以63n最小值是441,又因為8和63最小公倍數是504,所以這個數可以是(441+504n)。

5剩4,說明除以5餘4,所以(441+504n)除以5餘4,n最小為2,所以(441+504n)最小值為1449,

又因為5和504最小公倍數是2520,所以這個數可以是(1449+2520n)。

拓展資料:

思維是人的一種高階的心理活動形式。

數學思維也就是人們通常所指的數學思維能力,即能夠用數學的觀點去思考問題和解決問題的能力。比如轉化與劃歸,從一般到特殊、特殊到一般,函式/對映的思想,等等。一般來說數學能力強的人,基本體現在兩種能力上,一是聯想力,二是數字敏感度。

前者能夠把兩個看似不相關的問題聯絡在一起,這其中又以構造能力最讓人折服;後者便是大多數**的所謂geek,比如什麼nash之類的。當然也有兩種能力的結合體。

我國初、高中數學教學課程標準中都明確指出,思維能力主要是指:會觀察、實驗、比較、猜想、分析、綜合、抽象和概括;會用歸納、演繹和類比進行推理;會合乎邏輯地、準確地闡述自己的思想和觀點;能運用數學概念、思想和方法,辨明數學關係,形成良好的思維品質。

5樓:sbc的太陽

答:369個雞蛋;

1.解析:

正好拿完,表示整除;

有剩餘的,表示餘數,有餘數就是說(被除數-餘數)可以被除數整除。 "比如4個4個拿還剩1個"就是說"雞蛋個數-1 可以 被4整除",即正好拿完;

2.解題步驟:

先看幾組數,這裡給編號分別為1 2 3 4 5 6 7 8 9;

滿足1的是所有數,不考慮;

滿足8的一定滿足2和4,因此2和4不考慮;

滿足9的一定滿足3,所以3不考慮;

因此先算滿足 1 2 3 4 5 6 7 8 9的資料,因為1 2 3 4不考慮,只要滿足5 6 7 8 9就可以了;

因為6=2x3 包含在8 9 中,最後驗算;

3.因此得到:

5的情況是7x8x9=504 504÷5=100餘4 滿足;

7的情況是5x8x9=360 360÷7=51餘3 不滿足餘5,取360的4倍1440,360x4÷7=205餘5滿足;

8的情況是5x7x9=315 315÷8=39餘3 不滿足餘1,取315的3倍945 ,315x3÷8=118餘1滿足;

9的情況是5x7x8=280 280÷9=34餘4 不滿足餘0,取5x7x8x9=2520;

計算滿足5 7 8 9的資料為:504 + 1440 + 945 + 2520 = 5409;

驗算這個資料 同時滿足 5 7 8 9條件;

計算5x7x8x9=2520,因此滿足條件的更小資料是5409-2520x2=369;

驗算369這個資料是否滿足6的情況,不滿足就取其倍數。 369÷6=61餘3正好滿足。;

驗算369÷1=369餘0;

驗算369÷2=184餘1;

驗算369÷3=123餘0;

驗算369÷4=92餘1;

驗算369÷5=73餘4;

驗算369÷6=61餘3;

驗算369÷7=52餘5;

驗算369÷8=46餘1;

驗算369÷9=41餘0;

所以答案為369。

6樓:豆其英磨香

1個1個拿,正好拿完。3個3個拿,正好拿完。7個7個拿,正好拿完。9個9個拿,正好拿完。此數為7*9=63的倍數。設此數為63n

2個2個拿,還剩1個。4個4個拿,還剩1個。5個5個拿,還剩1個,8個8個拿,還剩1個。此數為5*8=40的倍數+1個.設此數為40k+1

即63n=40k+1

k=(63n-1)/40因為n,k均為正整數所以當n=7時,k的最小值為11

所以這筐雞蛋的最小值為63*7=40*11+1=441個。

2個2個拿,還剩1個。4個4個拿,還剩1個。8個8個拿,還剩1個。說明籃子裡的雞蛋個數為奇數。

3個3個拿,正好拿完。7個7個拿,正好拿完。9個9個拿,正好拿完。說明籃子裡的雞蛋個數為3、7與9的倍數。

5個5個拿,還剩1個,說明個位數為1或6,最終個位數為1.。

綜合上面所說,最少的應該是441,

這個數是2.4.5.8的倍數多1,是1.3.7.9的倍數,是6的倍數多3

∴是441個

3x7x3=63

63對於4,5來說都餘3,對於6餘3,對於8餘7,為了滿足題意需要3x7x3=63在乘以一個不被2整除數

3x7x3x7=63x7=441

1個1個拿,正好拿完。

......................441除1等於441

2個2個拿,還剩1個。

......................441除2等於220餘1

3個3個拿,正好拿完。

......................441除3等於147

4個4個拿,還剩1個。

.....................441除4等於110餘1

5個5個拿,還剩1個

.....................441除5等於88餘1

6個6個拿,還剩3個。.....................441除6等於73餘3

7個7個拿,正好拿完。.....................441除7等於63

8個8個拿,還剩1個。.....................441除8等於55餘1

9個9個拿,正好拿完。.....................441除9等於49

朋友,請採納正確答案,你們只提問,不採納正確答案,回答都沒有勁!!!

朋友,請【採納答案】,您的採納是我答題的動力,如果沒有明白,請追問。謝謝。

7樓:新野旁觀者

求答案 ?

一筐雞蛋:

1個1個拿,正好拿完。

2個2個拿,還剩1個。

3個3個拿,正好拿完。

4個4個拿,還剩1個。

5個5個拿,還剩1個

6個6個拿,還剩3個。

7個7個拿,正好拿完。

8個8個拿,還剩1個。

9個9個拿,正好拿完。

問筐裡有多少雞蛋?

1個1個拿正好拿完,3個3個拿正好拿完,7個7個拿正好拿完,9個9個拿正好拿完,框子裡雞蛋的個數是4*9=63的倍數。

2個2個拿剩1個,5個5個拿剩餘1個,個位數是1。

所以從以下數中找: 63×7、 63×17 、63×27 、63×37……

所以最小數是441個

8樓:載建碧盼柳

1、因為:「3個3個拿,正好拿完」、「7個7個拿,正好拿完」、「9個9個拿,正好拿完」

所以:雞蛋總數一定能被3、7、9的最小公倍數整除,即能被63整除;

2、因為:「5個5個拿,還剩1個

」,我們知道能被

5整除的數,其個位一定是5或者

0;所以:能被

5整除還能餘

1的數的個位一定是6或者

1;3、因為:「2個2個拿,還剩1個」,因此,雞蛋總數一定是奇數;

所以:雞蛋總數的個位一定為1;

4、由以上推斷可知:雞蛋總數可能為,63*7

或者63*17

....

5、因為:雞蛋總數能被63整除,即也能被3整除

所以:「6個6個拿,還剩3個」與「2個2個拿,還剩1個」是一回事,就不用再考慮

6、因為:8是4

的整數倍,則:雞蛋8個8個拿還剩1個,那麼4個4個拿就一定也能剩1個;

所以:「4個4個拿,還剩1個」和「8個8個拿,還剩1個」,我們只要考慮「8個8個拿還剩1個」的情況就可以了

。7、經驗證:63*7

=441

,剛好能被

8整除餘1;

所以:雞蛋總數為

441個

求答案一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好

一筐雞蛋 1個1個拿,正好拿完。2個2個拿,還剩1個。3個3個拿,正好拿完。4個4個拿,還剩1個。5個5個拿,還剩4個。6個6個拿,還剩3個。7個7個拿,正好拿完。8個8個拿,還剩1個。9個9個拿,正好拿完。問筐裡有多少雞蛋?設n為非負整數。1 3 7 9正好拿完,說明被1 3 7 9整除,因為1 ...

求答案一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好拿完

2個2個拿 4個4個拿 8個8個拿都剩一個,這個數是奇數。令這個數是8m 1。5個5個還差1個,這個數 1,能被5整除,這個數又是奇數,因此這個數的個位數字是9。1個1個拿 3個3個拿 7個7個拿 9個9個拿都正好拿完,這個數是7和9的公倍數。7和9的最小公倍數是63,令這個數是63n。6個6個拿剩...

求答案一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好拿完

1個1個拿,3個3個拿,7個7個拿,9個9個拿,正好拿完,則這個數是63的倍數 2個2個拿剩一個,4個4個拿剩一個,5個5個拿剩一個,8個8個拿剩一個,所以就是40倍多1 63 2a 1 40b 1 126a 62 40b 若a 3,378 62 440 40 11 63 7 441搞定 1 從二個...