勾股定理公式是什麼,什麼是勾股定理,計算公式是什麼?

2022-04-11 01:04:17 字數 5204 閱讀 2903

1樓:歐夕錯丁

勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。這個定理在中國又稱為「商高定理」,在外國稱為「畢達哥拉斯定理」。

勾股定理(又稱商高定理,畢達哥拉斯定理)是一個基本的幾何定理,早在中國商代就由商高發現。據說畢達高拉斯發現了這個定後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。

勾股定理指出:

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。

也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼a2+

b2=c2勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2+b2

=c2的正整陣列(a,b,c)。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數,故勾股陣列有無數多組。

推廣如果將直角三角形的斜邊看作二維平面上的向量,將兩斜邊看作在平面直角座標系座標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等於它在其所在空間一組正交基上投影長度的平方之和

什麼是勾股定理,計算公式是什麼?

2樓:暮夏淺眠

勾股定理,又稱畢達哥拉斯定理(pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面幾何中一個基本而重要的定理。

勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。反之,若平面上三角形中兩邊長的平方和等於第三邊邊長的平方,則它是直角三角形(直角所對的邊是第三邊)。

勾股定理計算:直角三角形的兩條直角邊的平方和等於斜邊的平方。a²+b²=c²。

3樓:提分一百

勾股定理的公式是什麼

4樓:匿名使用者

勾股定理是指在一個直角三角形中,兩短邊(a和b)的平方和等於第三邊(c)的平方~ a的平方+b的平方=c的平方。

5樓:

什麼是勾股定理,勾股定理是怎麼算出來的,你會了嗎

6樓:奇野說電影

任一直角三角形,兩直角邊a、b長度的平方和等於斜邊長度c的平方,即a的平方+b的平方=c的平方

7樓:花海唯美控p3儂

直角三角形的兩條直角邊的平方和等於斜邊的平方。

8樓:花茶甜若蜜

勾股定理是直角三角形內兩直角邊之和的平方等於斜邊的平方。

a²+b²=c²

9樓:唯淰__伱

勾股定理

文字表述:在任何一個的直角三角形(rt△)中,兩條直角邊的長度的平方和等於斜邊長度的平方(也可以理解成兩個長邊的平方相減與最短邊的平方相等)。

數學表達:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那麼a²+b²=c²

10樓:樂觀的啊怪

回答您好,您的問題我已經看到了,正在整理答案,請稍等一會兒哦~您好,勾股定理公式是a的平方加上b的平方等於c的平方。如果直角三角形兩直角邊分別為a,b,斜邊為c,那麼公式就是: a^2+b^2=c^2。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一

更多1條

勾股定理的公式是啥?

11樓:令可欣欽倩

斜邊為c,那麼a2+

b2=c2勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2+b2

=c2的正整陣列(a,b,c)設直角三角形兩直角邊為a和b。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數

12樓:微生耕順井錦

勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。這個定理在中國又稱為「商高定理」,在外國稱為「畢達哥拉斯定理」。

勾股定理(又稱商高定理,畢達哥拉斯定理)是一個基本的幾何定理,早在中國商代就由商高發現。據說畢達高拉斯發現了這個定後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。

勾股定理指出:

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。

也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼a2+

b2=c2勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2+b2

=c2的正整陣列(a,b,c)。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數,故勾股陣列有無數多組。

推廣如果將直角三角形的斜邊看作二維平面上的向量,將兩斜邊看作在平面直角座標系座標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等於它在其所在空間一組正交基上投影長度的平方之和。

勾股定理的逆定理的公式是什麼

13樓:匿名使用者

如果三角形兩邊的平方和等於第三邊平方,那麼這個三角形是直角三角形。

14樓:匿名使用者

根號下a平方十b平方等於c

勾股定理公式?

15樓:醉意撩人殤

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。

在中國,商朝時期的商高提出了「勾三股四玄五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。

16樓:

勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。這個定理在中國又稱為「商高定理」,在外國稱為「畢達哥拉斯定理」。

勾股定理(又稱商高定理,畢達哥拉斯定理)是一個基本的幾何定理,早在中國商代就由商高發現。據說畢達高拉斯發現了這個定後,即斬了百頭牛作慶祝,因此又稱「百牛定理」。

勾股定理指出:

直角三角形兩直角邊(即「勾」,「股」)邊長平方和等於斜邊(即「弦」)邊長的平方。

也就是說,

設直角三角形兩直角邊為a和b,斜邊為c,那麼

a2 + b2 = c2

勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2 + b2 = c2的正整陣列(a,b,c)。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數,故勾股陣列有無數多組。

推廣如果將直角三角形的斜邊看作二維平面上的向量,將兩斜邊看作在平面直角座標系座標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等於它在其所在空間一組正交基上投影長度的平方之和。

17樓:手機使用者

設直角三角形兩直角邊為a和b,斜邊為c,那麼a2 + b2 = c2

勾股定理現發現約有400種證明方法,是數學定理中證明方法最多的定理之一。

勾股陣列

滿足勾股定理方程a2 + b2 = c2的正整陣列(a,b,c)。例如(3,4,5)就是一組勾股陣列。

由於方程中含有3個未知數,故勾股陣列有無數多組。

推廣如果將直角三角形的斜邊看作二維平面上的向量,將兩斜邊看作在平面直角座標系座標軸上的投影,則可以從另一個角度考察勾股定理的意義。即,向量長度的平方等於它在其所在空間一組正交基上投影長度的平方之和。

18樓:

三角形三邊分別為a,b,c,a,b是直角邊,c是斜邊,勾股定理公式是a^2+b^2=c^2

19樓:匿名使用者

a²+b²=c²

也就是兩直角邊的平方相加等於第三邊的平方

20樓:匿名使用者

把直角三角形的兩直角邊的平方和等於斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理

21樓:匿名使用者

直角三角形兩直角邊的平方等於斜邊的平方。

22樓:落了的是花

直角三角形abc中,ab平方加上bc平方等於ac平方。注:ac大於ab和bc

23樓:匿名使用者

常見的勾股數

勾 股 弦

3k 4k 5k

5k 12k 13k

7k 24k 25k

8k 15k 17k

9k 40k 41k

...... ...... ......

a2 + b2 = c2

24樓:焦糖瑪奇朵甜粥

直角三角形的兩直角邊的平方和等於斜邊的平方

a²+b²=c²

25樓:匿名使用者

a²=b²+c² a=√(b+c)望採納

26樓:

a平方+b平方=c平方

27樓:951753璟

根號a的平方加b的平方等於b

28樓:匿名使用者

二維 a平方加b平方等於c平方

29樓:

a2 + b2 = c2

什麼是勾股定理,計算公式是什麼

30樓:

什麼是勾股定理,勾股定理是怎麼算出來的,你會了嗎

31樓:隨風飄散

勾股定理:直角三角形兩直角邊邊長平方和等於斜邊邊長的平方。

計算公式:a2+b2=c2

32樓:

在直角三角形中,兩直角邊的平方和等於斜邊的平方

33樓:提分一百

勾股定理的公式是什麼

初二數學勾股定理試題30道,初二數學勾股定理難一點的應用題,要有答案。謝謝。

1 在rt abc中,c 90 三邊長分別為a b c,則下列結論中恆成立的是 a 2abc2 d 2ab c2 2 已知x y為正數,且 x2 4 y2 3 2 0,如果以x y的長為直角邊作一個直角三角形,那麼以這個直角三角形的斜邊為邊長的正方形的面積為 a 5 b 25 c 7 d 15 3 ...

什麼是勾股定理,勾股定理是什麼?

意義 歐幾里得在他的 幾何原本 中給出了勾股定理的推廣定理 直角三角形斜邊上的一個直邊形,其面積為兩直角邊上兩個與之相似的直邊形面積之和 從上面這一定理可以推出下面的定理 以直角三角形的三邊為直徑作圓,則以斜邊為直徑所作圓的面積等於以兩直角邊為直徑所作兩圓的面積和 勾股定理還可以推廣到空間 以直角三...

勾股定理是什麼?

在我國,把直角三角形的兩直角邊的平方和等於斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理 pythagoras theorem 數學公式中常寫作a b c 勾股定理 在任何一個直角三角形中,兩條直角邊長的平方之和一定等於斜邊長的平方。這個定理在中國又稱為 商高定理 在外國稱...