向量的加減乘除怎麼算向量的加減乘除運演算法則是什麼

2021-03-05 09:22:13 字數 3387 閱讀 6249

1樓:是你找到了我

1、向量的加法:滿足平行四邊形法則和三角形法則,即

2、向量的減法:如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0oa-ob=ba.

即「共同起點,指向被減」,例如:a=(x1,y1),b=(x2,y2) ,則a-b=(x1-x2,y1-y2)。

3、向量的乘法:實數λ和向量a的叉乘乘積是一個向量,記作λa,且|λa|=|λ|*|a|。當λ>0時,λa的方向與a的方向相同;當λ<0時,λa的方向與a的方向相反;當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

4、向量的除法:a÷k=|a|/k*a的單位向量。即結果為原向量的長度縮小k倍後的向量,方向不變。

擴充套件資料:

一、向量加法的運算律:

1、交換律:a+b=b+a;

2、結合律:(a+b)+c=a+(b+c)。

3、加減變換律:a+(-b)=a-b

4、向量的加減乘(向量沒有除法)運算滿足實數加減乘運演算法則。

二、向量的數乘規律:

1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。

2、向量的數量積不滿足消去律,即:由a·b=a·c(a≠0),推不出b=c。

2樓:demon陌

向量加法,按三角形法則求和。即a+b結果為以a,b為兩邊的三角形的第三邊。如果以座標表示向量,則向量a(x1,y1)與向量b(x2,y2)相加的和是(x1+x2,y1+y2)所表示的向量。

向量減法,可以轉化為向量加法。即a-b=a+(-b),結果是以a和-b為兩邊的三角形的第三邊。向量a(x1,y1)與向量b(x2,y2)相減的結果是(x1-x2,y1-y2)所表示的向量。

向量乘法,a*b=|a|*|b|*cos,即a,b兩向量的長度的積再乘以它們夾角的餘弦,結果是一個數量而不再是一個向量。幾何意義相當於a向量長度與b向量在a向量上的投影長度相乘。

向量除法,分為幾種情況,(a,b為向量,k為常數)

1、 a÷k=|a|/k*a的單位向量。即結果為原向量的長度縮小k倍後的向量,方向不變。

2、k÷a=b,其中向量b的長度為k÷(|a|cos),與a的夾角為,結果有無數種,所以這樣的除法也沒什麼意義。

3樓:abc高分高能

向量加減法的運演算法則

向量的加減乘除運演算法則是什麼

4樓:紅醉卉單精

設a=(x,y),b=(x',y')。

加法向量的加法滿足平行四邊形法則和三角形法則。

向量的加法

ob+oa=oc。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。減法如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0.

0的反向量為0ab-ac=cb.即「共同起點,指向被

向量的減法

減」a=(x,y)b=(x',y')

則a-b=(x-x',y-y').如圖:c=a-b

以b的結束為起點,a的結束為終點。數乘實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。當λ>0時,λa與a同方向當λ<0時,λa與a反方向;

向量的數乘

當λ=0時,λa=0,方向任意。當a=0時,對於任意實數λ,都有λa=0。注:

按定義知,如果λa=0,那麼λ=0或a=0。實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。當λ>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍當λ<1時,表示向量a的有向線段在原方向(λ>0)或××反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律結合律:(λa)·b=λ(a·b)=(a·λb)。向量對於數的分配律(第一分配律):

(λ+μ)a=λa+μa.數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:①

如果實數λ≠0且λa=λb,那麼a=b。②

如果a≠0且λa=μa,那麼λ=μ。[2]需要注意的是:向量的加減乘除運算滿足實數加減乘除運演算法則。

數量積定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π定義:

兩個向量的數量積(內積、點積)是一個數量(沒有方向),記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉(依定義有:cos〈a,b〉=a·b

/|a|·|b|);若a、b共線,則a·b=±∣a∣∣b∣。向量的數量積的座標表示:a·b=x·x'+y·y'。

向量的數量積的運算律a·b=b·a(交換律)(λa)·b=λ(a·b)(關於數乘法的結合律)(a+b)·c=a·c+b·c(分配律)向量的數量積的性質a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。

(該公式證明如下:|a·b|=|a|·|b|·|cosα|

因為0≤|cosα|≤1,所以|a·b|≤|a|·|b|)向量的數量積與實數運算的主要不同點1.向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2.向量的數量積不滿足消去律,即:由a·b=a·c(a≠0),推不出b=c。3.|a·b|與|a|·|b|不等價4.由

|a|=|b|

,不能推出a=b,也不能推出a=-b,但反過來則成立。向量積定義:兩個向量a和b的向量積

向量的幾何表示

(外積、叉積)是一個向量,記作a×b(這裡「×」並不是乘號,只是一種表示方法,與「·」不同,也可記做「∧」)。若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:

垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b平行,則a×b=0,a、b垂直,則a×b=|a|*|b|(此處與數量積不同,請注意)。向量積即兩個不共線非零向量所在平面的一組法向量。

運演算法則:運用三階行列式設a,b,c分別為沿x,y,z軸的單位向量a=(x1,y1,z1)b=(x1,y1,z1)則a*b=a

bcx1

y1z1x1

y1z1向量的向量積性質:∣a×b∣是以a和b為邊的平行四邊形面積。a×a=0。

a平行b〈=〉a×b=0向量的向量積運算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上兩個分配律分別稱為左分配律和右分配律。

在演算中應注意不能交換「×」號兩側向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是錯誤的!

注:向量沒有除法,「向量ab/向量cd」是沒有意義的。

加減乘除的由來加減乘除的來歷

從小學就開始使用的 四種法則符號,簡稱四則。使用雖普通,多不知道其由來。一 減 的符號,是船員使用桶中的水時,為表示當天用水的份量,而以橫線做的記號,藉以表示減少水量,後來減法便以 作為減法符號。船員重新在使用過的桶內加水時,便在原來 的記號上加一縱線,所以加法便以 作為符號。和 的符號,於一四 年...

向量的運演算法則是什麼向量的加減乘除運演算法則是什麼

一 向量的概念 日常中我們所遇到的量可以分為兩類 一類量用一個數值便可以完全表示,比如面積 溫度 時間或質量等都屬於這一類,這一類質量稱為數量 或標量 另一類量,除了要用一個數以外,還要指明它的方向才能夠完全表示,比如速度 加速度 力等都屬於這一類,這一類的量稱 為向量 或向量 向量可以用一條有向線...

日語「加,減,乘,除」怎麼說,日語中的加減乘除怎麼讀

加 tasu 足 算 加法 加法 減 hiku 引 算 減法 減法 不常有 乘 kakeru 掛 算 乘法 乗法 除 waru 分 算 除法 除法 擴充套件資料 用法示例 八足 七 十五 8加7等於15 八引 七 一 8減7等於1 八掛 七 五十六 8乘以7等於56 八割 八 一 8除以8等於1 等...