兩個數的和 兩個數的積

2021-03-12 14:35:00 字數 5379 閱讀 3088

1樓:行路進酒

4和13

(下面的解法有點道理)

解題思路1:

假設數為 x,y;和為x+y=a,積為x*y=b.

根據龐第一次所說的:「我肯定你也不知道這兩個數是什麼」。由此知道,x+y不是兩個素數之和。

那麼a的可能11,17,23,27,29,35,37,41,47,51,53,57,59,65,67,71,77,79,83,87,89,95,97.

我們再計算一下b的可能值:

和是11能得到的積:18,24,28,30

和是17能得到的積:30,42,52,60,66,70,72

和是23能得到的積:42,60...

和是27能得到的積:50,72...

和是29能得到的積:...

和是35能得到的積:66...

和是37能得到的積:70...

......

我們可以得出可能的b為....,當然了,有些數(30=5*6=2*15)出現不止一次。

這時候,孫依據自己的數比較計算後,「我現在能夠確定這兩個數字了。」

我們依據這句話,和我們算出來的b的集合,我們又可以把計算出來的b的集合刪除一些重複數。

和是11能得到的積:18,24,28

和是17能得到的積:52

和是23能得到的積:42,76...

和是27能得到的積:50,92...

和是29能得到的積:54,78...

和是35能得到的積:96,124...

和是37能得到的積:,...

......

因為龐說:「既然你這麼說,我現在也知道這兩個數字是什麼了。」那麼由和得出的積也必須是唯一的,由上面知道只有一行是剩下一個數的,那就是和17積52。 那麼x和y分別是4和13。

解題思路2:

說話依次編號為s1,p1,s2。

設這兩個數為x,y,和為s,積為p。

由s1,p不知道這兩個數,所以s不可能是兩個質數相加得來的,而且s<=41,因為如果s>41,那麼p拿到41×(s-41)必定可以猜出s了(關於這一點,參考老馬的證明,這一點很巧妙,可以省不少事情)。所以和s為之一,設這個集合為a。

1).假設和是11。11=2+9=3+8=4+7=5+6,如果p拿到18,18=3×6=2×9,只有2+9落在集合a中,所以p可以說出p1,但是這時候s能不能說出s2呢?

我們來看,如果p拿到24,24=6×4=3×8=2×12,p同樣可以說p1,因為至少有兩種情況p都可以說出p1,所以a就無法斷言s2,所以和不是11。

2).假設和是17。17=2+15=3+14=4+13=5+12=6+11=7+10=8+9,很明顯,由於p拿到4×13可以斷言p1,而其他情況,p都無法斷言p1,所以和是17。

3).假設和是23。23=2+21=3+20=4+19=5+18=6+17=7+16=8+15=9+14=10+13=11+12,咱們先考慮含有2的n次冪或者含有大質數的那些組,如果p拿到4×19或7×16都可以斷言p1,所以和不是23。

4).假設和是27。如果p拿到8×19或4×23都可以斷言p1,所以和不是27。

5).假設和是29。如果p拿到13×16或7×22都可以斷言p1,所以和不是29。

6).假設和是35。如果p拿到16×19或4×31都可以斷言p1,所以和不是35。

7).假設和是37。如果p拿到8×29或11×26都可以斷言p1,所以和不是37。

8).假設和是41。如果b拿到4×37或8×33,都可以斷言p1,所以和不是41。

綜上所述:這兩個數是4和13。

解題思路3:

孫龐猜數的手算推理解法

1)按照龐的第一句話的後半部分,我們肯定龐知道的和s肯定不會大於54。

因為如果和54恰好是53和a,那麼孫知道的積m就是m=53*a,於是孫知道,這原來兩個數中至少有

一個含有53這個因子,因為53是個素數。可是小於100,又有53這個因子的,只能是

53本身,所以孫就可以只憑這個積53*a推斷出這兩個數術53和a。所以如果龐知道的

s大於54的話,他就不敢排除兩個數是53和a這種可能,也就不敢貿然說「但是我肯定

你也不知道這兩個數是什麼」這種話。

如果53+99

如果s=98+99,那麼龐可以立刻判斷出,這兩個數只能是98和99,而且m只能是98*99,

孫也可以知道這兩個術,所以顯然不可能。

2)按照龐的第一句話的後半部分,我們還可以肯定龐知道的和s不可以表示為兩個素數的和。

否則的話,如果鬼谷子選的兩個數字恰好就是這兩個素數,那麼孫知道積m後,就可以得到唯一的素因子分解,判斷出結果。於是龐還是不敢說「但是我肯定你也不知道這兩個數是什麼」這種話。

根據哥德**猜想,任何大於4的偶數都可以表示為兩個素數之和,對54以下的偶數,猜想肯定被驗證過,所以s一定不能是偶數。

另外型為s=2+p的奇數,其中p是奇素數的那些s也同樣要排除掉。

還有s=51也要排除掉,因為51=17+2*17。如果鬼谷子選的是(17,2*17),那麼孫知道

的將是m=2*17*17,他對鬼谷子原來的兩數的猜想只能是(17,2*17)。(為什麼51要單獨拿出來,要看下面的推理)

3)於是我們得到s必須在以下數中:

11 17 23 27 29 35 37 41 47 53

另外一方面,只要龐的s在上面這些數中,他就可以說「但是我肯定你也不知道這兩個

數是什麼」,因為這些數無論怎麼拆成兩數和,都至少有一個數是合數(必是一偶一

奇,如果偶的那個大於2,它就是合數,如果偶的那個等於2,我們上面的步驟已經保

證奇的那個是合數),也就是s只能拆成

a) s=2+a*b 或 b) s=a+2^n*b

這兩個樣子,其中a和b都是奇數,n>=1。

那麼(下面我說的「至少兩組數」中的兩組數都不相同,而且的確存在(也就是那些

數都小於100)的理由我就不寫了,根據條件很顯然)

a)或者孫的m=2*a*b,孫就會在(2*a,b)和(2,a*b)至少兩組數裡拿不定主意(a和

b都是奇數,所以這兩組數一定不同);

b)或者m=2^n*a*b,

如果n>1,那麼孫就會在(2^(n-1)*a,2*b)和(2^n*a,b)至少兩組數裡拿不定主意;

如果n=1,而且a不等於b,那麼孫就會在(2*a,b)和(2b,a)至少兩組數裡拿不定主

意; 如果n=1,而且a等於b,這意味著s=a+2*a=3a,所以s一定是3的倍數,我們只要

討論s=27就可以了。27如果被拆成了s=9+18,那麼孫拿到的m=9*18,他就會在

(9,18)和(27,6)至少兩組數裡拿不定主意。

(上面對51的討論就是從這最後一種情況的討論發現的,我不知道上面的論證是否

過分煩瑣了,但是看看51這個「特例」,我懷疑嚴格的論證可能就得這麼煩)

現在我們知道,當且僅當龐得到的和數s在

c= 中,他才會說出「我雖然不能確定這兩個數是什麼,但是我肯定你也不知道這兩個數

是什麼」這句話

孫臏可以和我們得到同樣的結論,他還比我們多知道那個m。

4)孫的話「我現在能夠確定這兩個數字了」表明,他把m分解成素因子後,然後組合成

關於鬼谷子的那兩個數的若干個猜想中,有且僅有一個猜想的和在c中。否則的話,他

還是會在多個猜想之間拿不定主意。

龐涓聽了孫的話也可以得到和我們一樣的結論,他還比我們多知道那個s。

5)龐的話「我現在也知道這兩個數字是什麼了」表明,他把s拆成兩數和後,也得到了

關於鬼谷子的那兩個數的若干個猜想,但是在所有這些拆法中,只有一種滿足4)裡的

條件,否則他不會知道究竟是哪種情況,使得孫臏推斷出那兩個數來。

於是我們可以排除掉c中那些可以用兩種方法表示為s=2^n+p的s,其中n>1,p為素數。

因為如果s=2^n1+p1=2^n2+p2,無論是(2^n1,p1)還是(2^n2,p2)這兩種情況,孫臏都

可以由m=2^n1*p1或m=2^n2*p2來斷定出正確的結果,因為由m得到的各種兩陣列合,

只有(2^n,p)這樣的組合,兩數和才是奇數,從而在c中,於是孫臏就可以宣佈自己知道

了是怎麼回事,可龐涓卻還得為(2^n1,p1)還是(2^n2,p2)這兩種情況犯愁。

因為11=4+7=8+3,23=4+19=16+7,27=4+23=16+11,35=4+31=16+19,37=8+29=32+5,

47=4+43=16+31。於是s的可能值只能在

17 29 41 53

中。讓我們繼續縮小這個表。

29不可能,因為29=2+27=4+25。無論是(2,27)和(4,25),孫臏都可以正確判斷出來:

a)如果是(2,27),m=2*27=2*3*3*3,那麼孫可以猜的組合是(2,27)(3,18)(6,9),

後面兩種對應的s為21和15,都不在c中,故不可能,於是只能是(2,27)。

b)如果是(4,25),m=4*25=2*2*5*5,那麼孫可以猜的組合是(2,50)(4,25)(5,20)

(10,10)。只有(4,25)的s才在c中。

可是龐涓卻要為孫臏的m到底是2*27還是4*25苦惱。

41不可能,因為41=4+37=10+31。後面推理略。

53不可能,因為53=6+47=16+37。後面推理略。

研究一下17。這下我們得考慮所有17的兩數和拆法:

(2,15):那麼m=2*15=2*3*5=6*5,而6+5=11也在c中,所以一定不是這個m,否則4)

的條件不能滿足,孫「我現在能夠確定這兩個數字了」的話說不出來。

(3,14):那麼m=3*14=2*3*7=2*21,而2+21=23也在c中。後面推理略。

(4,13):那麼m=4*13=2*2*13。那麼孫可以猜的組合是(2,26)(4,13),只有(4,13)

的和在c中,所以這種情況孫臏可以說4)中的話。

(5,12):那麼m=5*12=2*2*3*5=3*20,而3+20=23也在c中。後面推理略。

(6,11):那麼m=6*11=2*3*11=2*33,而2+33=35也在c中。後面推理略。

(7,10):那麼m=7*10=2*5*7=2*35,而2+35=37也在c中。後面推理略。

(8,9):那麼m=8*9=2*2*2*3*3=3*24,而3+24=27也在c中。後面推理略。

於是在s=17時,只有(4,13)這種情況,孫臏才可以猜出那兩數是什麼,既然如此,龐涓就知道這兩個數是什麼,說出「我現在也知道這兩個數字是什麼了」。聽了龐涓的話,於是我們也知道,這兩數該是(4,13)。

參***:

這兩個數字是4和13。原因同上。

<><><><><><><><><>

試題拓展:

你有》1並且<30的兩個不同的數字只把和告訴甲,然後只把積告訴乙。

甲對乙說:「我不知道這兩個數字是什麼,但你也肯定不知道。」

乙就說了:「我本來不知道的,你這麼一說,我就知道兩個數字是什麼了。」

甲於是說:「現在我也知道了!」

請問這兩個數字是分別是什麼? (答案:4和13。)

哪兩個數相乘的積是,哪兩個數相乘的積是

1000以內的質數 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 1...

兩個數的積是800。這兩個數的差距是7。這兩個數是多少

設小的數是x x x 7 800 x 7x 800 0 x 25 x 32 0 x1 25 x2 32 捨去 這兩個數是 25和32 列一元二次方程啊!設較小數為x 由題意得 x x 7 800 解得 x 25 25 7 32答 這兩個數分別為25和32 這兩個數分別是 x,x 7 x x 7 80...

兩個數相乘的積一定大於這兩個數相加的和對嗎

這不bai一定,比如說1x1 1 1 1 2再比如 2x2與2 2是相du等的zhi。所以要附加條件dao 在自然數 中,專 注 小學階段自然數不包屬含0 兩個不為1或都為2的數相乘必然大於相加。這樣就比較完整了。這裡要限定在 自然數 這個範疇裡很重要。不一定如 2 3 2 3 2 2 2 2 2 ...