量子力學算符問題,量子力學算符問題!

2021-03-22 01:34:08 字數 4634 閱讀 4708

1樓:匿名使用者

因為量子態是線性的, 它可以表示為一個向量。算符最初對應的實際操作是測量,測量會影響量子態。 那麼空間內把一個向量轉換為另一個向量, 數學上順理成章地用矩陣來表示。

當然算符後來擴充套件到一切對量子態的變換操作,數學上這些變換用矩陣形式表示也是最方便的。

算符的共軛就是算符的所有元素取複共軛。而算符如果是hermitian的,它的共軛轉置(注意不是共軛)等於它本身。 前者是一個轉換操作, 後者是算符的一個型別。

2樓:匿名使用者

我不認為算符實質就是矩陣。算符實質是操作,或測量,是對態向量操作,使態向量坍塌到一個特定的基矢上,並得到測量值。不過當我們選定一組正交基矢時,可以通過這組基矢來表示算符,這種表示方法就是矩陣表示,,|i>就是基矢,a是算符,算符的共軛是算符的一種對應形式,就像複數a+bi的共軛是a-bi。

而厄米算符是一類算符,這類算符是指算符的共軛依然是算符本身,就像實數,a的共軛就是a。

3樓:匿名使用者

同意07gli,算符不是矩陣,只是在解薛定諤方程的時候,單體作用還行,多體作用你根本

就沒法解,所以用到奧本海默近似,將其變成線性相關,但是波函式不是簡單的線性疊加,他們的關係可以用矩陣表示。至於第二個問題,抱歉,不是物理專業,幫不了你

有關量子力學的算符的小問題

4樓:萬有理論

注意p算符的定義:p算符=|α><α|,被稱為投影算符

那麼p|>=|α><α|β>,其意義是將任意態向量|β>投影到本徵矢|α>上面,而投影到本徵矢|α>上面的座標大小則剛好是<α|β>,所以p|β>=|α><α|β>=<α|β>|α>

其實只要將<|>的定義式直接代入,也可知道結果

補充:∑|e>=|α>

易知,|α>=∑ci|ei>,(i為下標,∑對i求和,下同) 1

該式的物理意義為:體系的任一狀態的波函式可以用體系正交歸一化的本證態函式組來,或者說體系的任一態向量可以由希爾伯特空間中的正交歸一基矢來表示

其中ci為係數,是一個標量,其大小計算如下:

將上式同時「左乘」一個左矢=∑ci

又知當i=j時,=1(i不等於j時則恆為0),所以

==ci 2

將2式代回到1式中,得到

|α>=∑ci|ei>

=∑|ei>

=∑|ei>

ps:樓主仔細看看書,自然就會明白的,以上內容書上都有提到。

5樓:匿名使用者

|β這裡投影算符:p算符=|α><α|,

p|β>=|α><α|β>,

其中<α|β>是左右矢的內積運算,求|β>投影在α表象中對應於|α>的係數,是一個標量,故順序可前可後,可寫到向量|α>之前,於是成為

p|β>=<α|β>|α>。

∑|e>=|α>其實就是|α>在e表象中的投影表達,這裡投影算符為:p=|e>,|α>的投影為:

p|α>=|e>=|e>

於是用e表象中的所有基矢|e>來表達|α>,就成為|α>=∑|e>=∑|e>

6樓:匿名使用者

|α你的問題我在學習的過程中也遇到過,你可以這樣考慮,

第一個問題:

p算符=|α><α|,p算符|β>=<α|β>|α>,

p是一個單位算符,本徵值是1,相當於

1*|β>=>|α><α|β>,|β>和<α作用則是積分,而|α>,<α|是共軛的不同向量,積分是可以換次序的,注意和前邊的算符的常規表示對應,

|α>,|β>都是波函式,因為要打積分號不方便,就不說了,只是要區分刃矢和刁矢的原始寫法,因為他們是兩個不同線性空間的量,互為共軛

第二個問題:∑|e>=|α>,求和號只不過是在一個線性空間中把波向量|α>罷了,可以寫成:∑|e>=|α>,這樣就好看多了,前邊的|相當於後邊|α>的分量。

關於dirac算符,你要做的就是把前邊學的和它對於起來,要知道dirac算符只不過是為了簡化才引入的,雖然很有用,但不是什麼新知識,前邊的類容清楚了,一對應就理解了,希望對你有用

量子力學有關算符的簡單問題

7樓:匿名使用者

在沒有上下文的情況下一般來說兩個波函式ab直接相乘是沒有意義的。

下面那個式子是內積,關於向量內積的一般理論,簡單點可以找線性代數的書上有。這是a的共軛算符a(+)的定義式。

量子力學這部分如果很繞的話,如果只是應用為主, 建議直接用狄拉克記號的體系來記比較簡單。

量子力學有關算符的一個小問題

8樓:應巨集輝

第一題主要兩個r的物理意義不同

量子力學算符

9樓:匿名使用者

說算符之前說點背景:

簡單的講,對於量子力學,我們關心的物質世界,為了方便量化,可以簡單的稱之為「系統」。 也就是說需要了解和改變的物件,是系統。

那麼如何描述一個系統呢,在這裡,就引入了「態」的概念。 系統的態,從字面上,就是系統所處的狀態。 嚴格上說,「態」就是包含了對於一個系統,我們所有「有可能」瞭解的資訊的總和。

在這個抽象定義的基礎上,為了描繪「態」,引入了「態函式」,用一個函式來代表一個態,到這裡就可以將問題數學化和具體化了。

對於系統的這個態,也就是對於物質的狀態,我們可以做那些呢? 無非就是了解(也就是測量),和干涉(也就是改變)。 量子力學裡面,瞭解的過程和干涉的過程其實是同步而不能分割的,這也從某種意義上提供了方便---為了描繪我們如何對系統的態進行了解,或進行改變,我們只需引入一種數學形式就可以了。

這種數學形式,就被稱作「算符」。 也就是說算符是測量/改變的數學形式。 那麼這種數學形式就一定是作用在同樣是數學形式的態函式上。

對於不同的系統,和不同的系統所可能具備的不同狀態,我們就引入不同的態函式來描繪。 同理,對於不同型別的改變,干涉,測量,我們就引入不同型別的算符。

所以,當一個操作(測量,改變)被施加在一個系統上,數學上一個算符就作用在了一個態函式上。 毫無疑問,我們希望從這種操作中瞭解我們究竟如何改變了系統,或者我們希望從測量裡得到希望的系統引數。 這時,我們可以觀察數學化以後的算符作用在態函式上得到了什麼-----得到的是一個新的態函式-----這個新的態函式自然也就代表了我們改變之後的那個系統。

特別的,對於所有「測量」類操作, 我們能夠得到來自系統的反饋。 這種反饋也就是測量的結果。 並非所有操作都能得到可以觀測的結果,而這類能得到可觀結果的操作--也就是測量,其代表的算符也必然具備某種共性,這種共性被成為厄米性,這類算符被稱為厄米算符。

這類算符作用在態函式上,可以得到態函式本徵函式的本徵值--------本徵值也就是測量的結果。 舉例來說,動量算符作用於態函式,就得到系統的動量。

再談一點關於具體的數學化過程----------在薛定諤表示下(一種數學化的方法),態函式的樣子就是一個正常的連續函式。相對的,算符自然就是可以對函式進行操作的數學符號了---它可以包含微分,積分,加減乘除,取絕對值等等等等。

而在狄拉克表示下(另一種數學化的方法),態函式的樣子是狄拉克括號,這裡就會引入一套新的針對算符的數學化的方法。

paoli表示下,系統被數學化為向量,向量化的態函式對應的算符又是什麼呢? 可以想見,就是可以對向量進行操作的矩陣。 所以paoli表示中算符稱為了矩陣。

我儘量說了一些關於算符內容的,教科書裡不會有的介紹, 希望對理解有所幫助。 具體的東西還是看書來的比較明白。

10樓:匿名使用者

算符就是對某個物理量的一種操作(可能是相乘,相加,積分 微分等等)跟數學裡的運算元是一回事,你知道什麼是拉普拉斯運算元吧就是求二階偏導的那個,

量子力學常用厄米算符,把它弄明白吧!

11樓:匿名使用者

量子力學前必須先看完:數學物理方法,理論力學,電動力學;基本的矩陣也要讀,至少要讀到矩陣分解。常微分方程也要學,學到穩定性前。

向量代數也要學。另外有的數學物理方法教程沒有涉及到高斯(超幾何方程),庫默方程。

另外看你選的書,關於量子力學有的建議在統計力學前學,有的建議在統計力學後學。你的書的的特點將直接決定你要不要學統計力學。

12樓:匿名使用者

打個比方來說吧:

中學裡的函式是從實數到實數的對映,

算符就是從線性空間裡的向量到同一個線性空間裡的向量的對映。

看看線性代數吧,量子力學裡的算符通常都是線性變換。

求助量子力學裡面的有關算符的證明題

13樓:匿名使用者

好吧,如果我沒有猜錯,樓主是在看周世勳的《量子力學》吧。周的這一塊寫的不太好理解,我當年學量子力學也在你這猶豫了很久。其實這個地方就是充分利用了對可以交換。

不過,初學量子力學,對算符不太好理解。我建議樓主不要再看這個解法。用另外一種方式,會讓你理解更透徹。

下面,我來幫你從另外一個角度理解這個問題。你們老師上課的時候肯定會教你們這些知識:即使老師不說,上面這些也是必須會的。

以後學量子力學都會用到。然後,我們再回到你的問題,我給你寫紙上:這樣就好理解了吧!

用下面的方式,不容易亂。以後學量子力學如果有問題,還可以向我提問。如果我的回答對你有幫助,請您採納。

有關量子力學的算符的小問題,量子力學有關算符的一個小問題

注意p算符的定義 p算符 被稱為投影算符 那麼p 其意義是將任意態向量 投影到本徵矢 上面,而投影到本徵矢 上面的座標大小則剛好是 所以p 其實只要將 的定義式直接代入,也可知道結果 補充 e 易知,ci ei i為下標,對i求和,下同 1 該式的物理意義為 體系的任一狀態的波函式可以用體系正交歸一...

量子力學算符量子力學裡的算符怎麼理解為什麼要算符?

說算符之前說點背景 簡單的講,對於量子力學,我們關心的物質世界,為了方便量化,可以簡單的稱之為 系統 也就是說需要了解和改變的物件,是系統。那麼如何描述一個系統呢,在這裡,就引入了 態 的概念。系統的態,從字面上,就是系統所處的狀態。嚴格上說,態 就是包含了對於一個系統,我們所有 有可能 瞭解的資訊...

量子力學中角動量算符怎麼得出的,量子力學中,為什麼角動量算符和動能算符是偶宇稱算符,而動量算符和位置算符是奇宇稱算符

角動來量就是r叉乘p,r和p都是知道的,自角動量也就知道了,量子bai力學和經典力學的du區別在於zhi對易關係,由dao於角動量可以用p和r表出,那麼角動量和r,p之間的對易關係完全有r和p的對易關係決定,連續使用rp之間的對易關係就可以得到角動量與所有物理量之間的對易關係。在座標表象中角動量就是...