求函式是否在一點可導是不是看那一點的左右導數是否相同

2021-03-27 15:09:49 字數 4939 閱讀 1104

1樓:孤獨的狼

必須相同,只有左導數=右導數=在該點的導數

這才是導數存在的充要條件

求一個函式是否在一點可導是不是看那一點的左右導數是否相同? 比如,在這個點要連續不?

2樓:驫犇焱毳淼

函式f(x)在x=a點可導的條件:①f(x)在x=a連續

②f(x)在x→a的左導數=右導數

判斷一個函式在某點處可不可導,只要算這點的左右導數是否一樣? 判斷連續性時,是不是隻要研究分段點左 20

3樓:匿名使用者

你有點筆誤:

判斷一個函式在某點處可不可導,只要算這點的左右導數是否一樣!

判斷連續性時,是不是隻要研究分段點左右極限是否一致,如果一致,再判斷分段點的 「極限」 是否與該點函式值相同,若相同則連續!

如何判斷一個函式在某個點的可導性?

4樓:幸運的

首先判斷函式在這個點x0是否有定義,即f(x0)是否存在;其次判斷f(x0)是否連續,即f(x0-), f(x0+), f(x0)三者是否相等;再次判斷函式在x0的左右導數是否存在且相等,即f『(x0-)=f'(x0+),只有以上都滿足了,則函式在x0處才可導。

函式可導的條件:

如果一個函式的定義域為全體實數,即函式在其上都有定義,那麼該函式是不是在定義域上處處可導呢?答案是否定的。函式在定義域中一點可導需要一定的條件:

函式在該點的左右兩側導數都存在且相等。這實際上是按照極限存在的一個充要條件(極限存在,它的左右極限存在且相等)推導而來。

可導的函式一定連續;不連續的函式一定不可導。

可導,即設y=f(x)是一個單變數函式, 如果y在x=x0處存在導數y′=f′(x),則稱y在x=x[0]處可導。

如果一個函式在x0處可導,那麼它一定在x0處是連續函式。

函式可導定義:(1)設f(x)在x0及其附近有定義,則當a趨向於0時,若 [f(x0+a)-f(x0)]/a的極限存在, 則稱f(x)在x0處可導。

(2)若對於區間(a,b)上任意一點(m,f(m))均可導,則稱f(x)在(a,b)上可導。

5樓:森燕百雨澤

判斷連續用定義法,函式f(x)在點x0是連續的,是指lim(x→x0)f(x)=f(x0)

函式在某個區間連續是指

任意x0屬於某個區間都有以上的式子成立。

還有一條重要結論:初等函式在其有意義的定義域內都是連續的。

從影象上看,可導函式是一條光滑曲線,即沒有出現尖點,如y=x絕對值在x=0處是尖點,故不可導。而且因為可導必連續,所以不連續點(間斷點)一定不可導。

從定義上,f'(x0)=lim△x→0

[f(x0+△x)-f(x0)]/△x

我們必須求出函式f(x)

在x=x0處可導的充分必要條件是x=x0處的左右導數都存在且相等,即f'(x0-0)=f'(x0+0)

函式在某點是否連續? ,到底是證明左右導數是否存在呢 還是證明左右極限是否存在?

6樓:淨末拾光

可以類比一下bai,在某一du

點連續,就是需要極限值

zhi=函式值,dao而一元函式的極專限是左右屬方向趨近的,就需要左右極限相等。

同樣的,在某一點可導,也是需要導函式首先要存在,進而導函式在這一點連續,也就回到了函式連續的類似概念,在這一點左右導數需要相等,才能保證(導函式連續)在此點可導。

7樓:匿名使用者

? 前八十回? 後四十回

函式在某一點的左右導數相等,那麼在這一點一定是可導的嗎

8樓:是你找到了我

函式在某一點的左右導數相等,那麼在這一點不一定是可導。例如,可去間斷點:左極限和右極限存在且相等但是該點沒有定義。

給定一個函式f(x),對該函式在x0取左極限和右極限。f(x)在x0處的左、右極限均存在的間斷點稱為第一類間斷點。若f(x)在x0處得到左、右極限均存在且相等的間斷點,稱為可去間斷點。

可去間斷點是不連續的。可去間斷點可以用重新定義xo處的函式值使新函式成為連續函式。

9樓:匿名使用者

函式在某一點可導的充要條件就是左右導數存在且相等,所以左右導數相等就一定可導。其他那些扯到極限的都是不正確的,那是在討論導函式是否連續的問題,跟在那一點可導沒關係。在那一點可導,並不要求導函式在那一點要連續。

10樓:匿名使用者

這個採納答案是認真的嗎?可導的充要條件就是左右導數相等,按採納的答案的話,等於直接推翻了這個定理。

11樓:崎嶇以尋壑

在某一點的左導數右導數存在相等,還需要在這一點連續,否則不相等。

比如可去間斷點,滿足左右導數存在且相等,但在這一點不連續,故不可導,連續是可導的必要條件。

12樓:白馬非馬也

可去間斷點是左右極限存在且相等,但是極限值不等於函式值所以不連續

13樓:

再一點沒定義,間斷導數肯定都是不存在的。左右導數存在,肯定能推出在該點函式連續。其次,導數相等,必推出函式在該點可導。

在不知道函式是不是可導的情況下求函式在某一點的左右導數怎麼做這類題

14樓:匿名使用者

用定義做,就是

f'+(a) = lim(x→0+)[f(x)-f(a)]/(x-a) = ……,

f'-(a) = lim(x→0-)[f(x)-f(a)]/(x-a) = ……。

15樓:匿名使用者

一般是按左右導數的定義去計算。

怎樣證明函式在某一點處的可導性 首先判斷函式在這個點x0是否有定義,即f(x0)是否存在; 其次判

16樓:匿名使用者

你可以想下來這個函

數x>=0時f(x)=x^自3+1,

x<0時f(x)=x^3-1

這個函式在x=0時有一個跳躍間斷點,是不可導的但是它的一階導數為3x^2是連續的,在x=0時都是0所以不能用一階導數的連續性判斷原函式的可導性

函式在某點左右可導是否能推出該函式在那一點連續?

17樓:匿名使用者

本題bai不連續(注意本題左右導數

du也不等)zhi

但是,注意:

[可導],與[左右導dao數存在相等]並不是同回一概念。

對於分段函式,如果在x=x0不連續,即便左右導數存在並且相等,那也不能說在x=x0可導。

可導,答前提就是必須在x=x0連續,並且左右導數相等。

18樓:匿名使用者

可導一定連續來,但連續自不一定可導。

bai某一點左右可導並不能保du證這一zhi點可導(可導必須滿dao足此點左右導數相等。)

你在圖中寫的那個函式在x=0處是不可導的,因為函式在x=0處雖有左導數跟右導數,但兩者不相等(左導數是1,右導數是-1),故函式在x=0處不可導,從而也就不連續了

19樓:徐忠震

是的。函式在一點連

bai續要滿足du

三個條件,一zhi是在該點有定義,二是在該點的dao函式左右極限存在內且相等,三容是左右極限等於函式在該點的函式值,因此滿足可導條件之後,符合上面三個條件,所以函式在某點左右可導能推出該函式在那一點連續。

連續(continuity)的概念最早出現於數學分析,後被推廣到點集拓撲中。

假設f:x->y是一個拓撲空間之間的對映,如果f滿足下面條件,就稱f是連續的:對任何y上的開集u, u在f下的原像f^(-1)(u)必是x上的開集。

若只考慮實變函式,那麼要是對於一定區間上的任意一點,函式本身有定義,且其左極限與右極限均存在且相等,則稱函式在這一區間上是連續的。

分為左連續和右連續。在區間每一點都連續的函式,叫做函式在該區間的連續函式。

20樓:鎏念

你舉得這個例子很顯然不符合,因為右並不可導

21樓:匿名使用者

樓主,你把右導數表示式寫出來,你看看它極限存在嗎?只能說左連續

22樓:涼念若櫻花妖嬈

可以。因為在某點左(右)可導則必左(右)連續(證明方法與 「可導必連續」專

的證明類似),因而若函式在屬某點左、右可導必可推出在該點連續的結論。

某一點左右可導並不能保證這一點可導(可導必須滿足此點左右導數相等。)

23樓:匿名使用者

可導一定連續,但連續不一定可導。

某一點左右可導並不能保證這一點可導

(可導必須滿足此點左右導數相等。)

24樓:匿名使用者

本題不連續(注意本題左右

導數也不等)

但是,注意:

[可導],與[左右導數存在相等專]並不是同一概念屬。

對於分段函式,如果在x=x0不連續,即便左右導數存在並且相等,那也不能說在x=x0可導。

可導,前提就是必須在x=x0連續,並且左右導數相等。

函式在一點連續要滿足三個條件,一是在該點有定義,二是在該點的函式左右極限存在且相等,三是左右極限等於函式在該點的函式值,因此滿足可導條件之後,符合上面三個條件,所以函式在某點左右可導能推出該函式在那一點連續。

連續(continuity)的概念最早出現於數學分析,後被推廣到點集拓撲中。 假設f:x->y是一個拓撲空間之間的對映,如果f滿足下面條件,就稱f是連續的:

對任何y上的開集u, u在f下的原像f^(-1)(u)必是x上的開集。

若只考慮實變函式,那麼要是對於一定區間上的任意一點,函式本身有定義,且其左極限與右極限均存在且相等,則稱函式在這一區間上是連續的。 分為左連續和右連續。在區間每一點都連續的函式,叫做函式在該區間的連續函式。

導函式問題,若函式在某點三階可導是不是在該點領域內二階可導?該二階導數在該點是連續的

只要是有三階倒數,那麼二階導數肯定存在,沒有二階導數來不了三階倒數,另外,可導一定連續,連續不一定可導 對的,可導必連續,3階可導,二階必連續 函式二階連續可導可以說明三階導數存在麼 不能。連續函式不一定可導,所以二階連續可導不能推論三階導數存在。二階導數,是原函式導數的導數,將原函式進行二次求導。...

函式在一點處可導為什麼還要鄰域內處處可導,才是在這一點解析

您好!在鄰近處處處可導,為的是說明鄰近處 處處連續 函式在某一點解析說明鄰域內可導還是什麼?詳細點說,謝謝!函式的解析是複變函式中的基本概念 如果一個函式f x 在點x0處可導,且在x0點的某個鄰域內均可導,則稱函式f x 在點x0解析。如果函式f x 在區域d內任一點解析,則稱函式f x 在區域d...

函式中的一點有切線,是否一定可導

不是的,只是一點,但不能保證其他的點有導數。可以舉反例的。不好畫圖呀 我想想辦法整一張 上來 切線方程是根據導函式確定的,不可導怎麼來切線方程?所以答案是確定的 函式在一點處有切線但不一定在該點處可導 5 如果切線是與x軸垂直的,此時導數為無窮大,因此不可導.比如y x 1 3 在x 0處.函式在某...