1樓:__嚠
任意四邊形各邊中點連線所圍成的圖形是平行四邊形;平行四邊形---平行四邊形;菱形——矩形;矩形——菱形;正方形——正方形;普通梯形——平行四邊形;等腰梯形——菱形。不知道對你有沒有幫助。
初中數學圖形概念
2樓:匿名使用者
平面圖形
名稱 符號 周長c和麵積s
正方形 a—邊長 c=4a
s=a2
長方形 a和b-邊長 c=2(a+b)
s=ab
三角形 a,b,c-三邊長
s-周長的一半
a,b,c-內角
其中s=(a+b+c)/2 s=ah/2
=ab/2·sinc
=[s(s-a)(s-b)(s-c)]1/2=a2sinbsinc/(2sina)
四邊形 d,d-對角線長
α-對角線夾角 s=dd/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 s=ah
=absinα
菱形 a-邊長
α-夾角
d-長對角線長
d-短對角線長 s=dd/2
=a2sinα
梯形 a和b-上、下底長
h-高m-中位線長 s=(a+b)h/2
=mh圓 r-半徑
d-直徑 c=πd=2πr
s=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
c=2r+2πr×(a/360)
s=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 s=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2
≈2bh/3
圓環 r-外圓半徑
r-內圓半徑
d-外圓直徑
d-內圓直徑 s=π(r2-r2)
=π(d2-d2)/4
橢圓 d-長軸
d-短軸 s=πdd/4
立方圖形
名稱 符號 面積s和體積v
正方體 a-邊長 s=6a2
v=a3
長方體 a-長
b-寬c-高 s=2(ab+ac+bc)
v=abc
稜柱 s-底面積
h-高 v=sh
稜錐 s-底面積
h-高 v=sh/3
稜臺 s1和s2-上、下底面積
h-高 v=h[s1+s2+(s1s1)1/2]/3擬柱體 s1-上底面積
s2-下底面積
s0-中截面積
h-高 v=h(s1+s2+4s0)/6
圓柱 r-底半徑
h-高c—底面周長
s底—底面積
s側—側面積
s表—表面積 c=2πr
s底=πr2
s側=ch
s表=ch+2s底
v=s底h
=πr2h
空心圓柱 r-外圓半徑
r-內圓半徑
h-高 v=πh(r2-r2)
直圓錐 r-底半徑
h-高 v=πr2h/3
圓臺 r-上底半徑
r-下底半徑
h-高 v=πh(r2+rr+r2)/3
球 r-半徑
d-直徑 v=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 v=πh(3a2+h2)/6=πh2(3r-h)/3
a2=h(2r-h)
球檯 r1和r2-球檯上、下底半徑
h-高 v=πh[3(r12+r22)+h2]/6圓環體 r-環體半徑
d-環體直徑
r-環體截面半徑
d-環體截面直徑 v=2π2rr2
=π2dd2/4
桶狀體 d-桶腹直徑
d-桶底直徑
h-桶高 v=πh(2d2+d2)/12
(母線是圓弧形,圓心是桶的中心)
v=πh(2d2+dd+3d2/4)/15(母線是拋物線形)
3樓:匿名使用者
三角形:由三條線段抄首尾順次連線
襲的圖形叫做三角形等腰三角形:兩邊相等的三角形叫做等腰三角形等邊三角形:三邊都相等的三角形叫做等邊三角形平行四邊形:
兩組對邊分別平行的四邊形叫做平行四邊形矩形:有一個角是直角的平行四邊形是矩形菱形:有一組鄰邊相等的平行四邊形是菱形正方形:
有一角是直角的菱形是正方形梯形:一組對邊平行。另一組對邊不平行的四邊形叫做梯形直角梯形:
有一個角是直角的梯形是直角梯形等腰梯形:兩腰相等的梯形叫做等腰梯形圓:線段oa繞端點o旋轉一週,另一個端點a所形成的圖形叫做圓
4樓:匿名使用者
我給你bai說一下三角形的四心吧外心:三du條邊的中垂線zhi的交點,是三dao角形的外接圓的圓心,特點內是容到三個頂點的距離相等,銳角三角形的外心在三角形的內部,直角三角形的外心在斜邊的中點上,鈍角三角形的外心在三角形的外面。內心:
三條角平分線的交點,是內切圓的圓心,到三邊的距離相等,三角形面積可表示為s=(a+b+c)r/2重心:三條邊上的中線的交點,重心將每一條中線分成了2:1的兩部分垂心:
三條高線的交點,這裡面的性質是共點園的性質,屬於競賽內容可以不用掌握!
初中數學中的平行四邊形法則定義是什麼?
5樓:世紀魔術師
平行四邊形的定義:在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形.
平行四邊形的定義、性質:
(1)平行四邊形對邊平行且相等.
(2)平行四邊形兩條對角線互相平分.(菱形和正方形)(3)平行四邊形的對角相等,兩鄰角互補
(4)連線任意四邊形各邊的中點所得圖形是平行四邊形.(推論)(5)平行四邊形的面積等於底和高的積.(可視為矩形)(6)平行四邊形是旋轉對稱圖形,旋轉中心是兩條對角線的交點.
(7)過平行四邊形對角線交點的直線,將平行四邊形分成全等的兩部分圖形.
(8)平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.
(9)一般的平行四邊形不是軸對稱圖形,菱形是軸對稱圖形.
(10)平行四邊形abcd中,ac、bd是平行四邊形abcd的對角線,則各四邊的平方和等於對角線的平方和(可用餘弦定理證明).
(11)平行四邊形對角線把平行四邊形面積分成四等分.
判定:(1)兩組對邊分別相等的四邊形是平行四邊形;
(2)對角線互相平分的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
(4)兩組對邊分別平行的四邊形是平行四邊形;
(5)兩組對角分別相等的四邊形是平行四邊形;
(6)一組對邊平行一組對角線互相平分的四邊形是平行四邊形;
(7)一組對邊平行一組對角相等的四邊形是平行四邊形;
連線任意四邊形各邊的中點所得圖形是平行四邊形。為什麼?這部分知識什麼時候學
任意連線一條對角線。對角線將原四邊形分為兩個三角形,對角線兩邊的新四邊形兩邊分別是兩個三角形的中位線。都平行且相等於1 2對角線長,所以那兩邊平行相等。故新四邊形為平行四邊形。連結任意四邊形兩對角線,由三角形中位線平行且等於第三邊的一半,可證各邊中點圍成的四邊形有一組對邊平行且相等 或兩組對邊分別平...
下面各圖形中,由平移得到的圖形是ABC
根據旋轉的意義並結合圖形可知 選項a中的圖形是由如圖圖形旋轉得到的 故選 a.根據平移的性質可知 b中圖形可以通過平移得到 故選 b.在下圖的四個圖形中,不能由左邊的圖形經過旋轉或平移得到的是 a.b.c.d a 由圖形逆時針旋轉90 而得出,故本選項不符合題意 b 由圖形順時針旋轉180 而得出版...
數學題 相似圖形的變換,小學數學中圖形的變換方式有哪幾種?
假設方格bai單位為1 觀察圖形可知 duab bc cd da 且ab cd bc ad 所以,原圖zhi為一菱形 我們做出的新圖只dao要內對角線分別為原圖的根號2倍即可容bd 根號2 ac 3倍根號2 所以,新圖的對角線分別為2 6 知道了對角線長度,且對角線是垂直平分的,就可以知道4個頂點的...