複數和實數的運算有什麼相同和不同

2021-05-22 20:38:57 字數 6510 閱讀 9834

1樓:小鈴鐺

複數集是實數集的擴充套件,在擴充套件中引入新數「i」既虛數單位因此實數a成為複數a+bi在b=0時的特殊情況.複數運算和實數運算都是數的運算。

數是數學的基礎,數的本質在於運算。複數集是實數集的擴充套件,在擴充套件中引入新數「i」,既虛數單位,因此實數a成為複數a+bi在b=0時的特殊情況.複數運算和實數運算都是數的運算,因此它們有許多類似的性質,如果在複數運算的教學中藉助於類比思想方法,通過對實數運算的回憶類比,可以使學生猜想出複數運算的規律與特點

複數的整數次冪的運演算法則跟實數運算一樣 ,複數的分數次冪的運算不能如這些實數的法則。

複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,

則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i.

兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律,

即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3).

複數x被定義為二元有序實數對(a,b) ,記為z=a+bi,這裡a和b是實數,i是虛數單位。在複數a+bi中,a=re(z)稱為實部,b=im(z)稱為虛部。當虛部等於零時,這個複數可以視為實數;當z的虛部不等於零時,實部等於零時,常稱z為純虛數。

複數域是實數域的代數閉包,也即任何復係數多項式在複數域中總有根。 複數是由義大利米蘭學者卡當在十六世紀首次引入,經過達朗貝爾、棣莫弗、尤拉、高斯等人的工作,此概念逐漸為數學家所接受。

複數的四則運算規定為:加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;減法法則:

(a+bi)-(c+di)=(a-c)+(b-d)i;乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;除法法則:(a+bi)÷(c+di)=[(ac

2樓:匿名使用者

數集擴充的其中一條原則就是:數集擴充後的數學法則與擴充前的數學法則不得

矛盾。所以,運算性質在實數集擴充為複數集後依然保留。即複數運算與實數運算其實一樣的。

但是,複數的開方運算有點意思:任意一個複數必然有且只有n個n次方根。

3樓:許初南圭閎

從表面來看虛數不遵循,但是從實質上而言是遵循的,比如平方和,在實數裡面是平方差公式

即a^2-b^2=(a+b)(a-b)

令b為純虛數(當然一般虛數也可以,為了計算簡單我設為純虛數)b=ki

(a+ki)(a-ki)=a^2-(ki)^2=a^2+k^2(i^2=-1)

所以說其實是遵從的,不要只看表面現象

什麼是虛數?它和實數有什麼區別?

4樓:喵喵喵啊

實數,是有理數

和無理數的總稱。實數可以分為有理數和無理數兩類,或代數數和超越數兩類。

在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i² = - 1。

虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。

擴充套件資料

像x+1=0這樣最簡單的二次方程,在實數範圍內沒有解。12世紀的印度大數學家婆什伽羅都認為這個方程是沒有解的。他認為正數的平方是正數,負數的平方也是正數。

因此,一個正數的平方根是兩重的;一個正數和一個負數,負數沒有平方根,因此負數不是平方數。這等於不承認方程的負數平方根的存在。

到了16世紀,義大利數學家卡爾達諾在其著作《大術》(《數學大典》)中,把記為1545r15-15m這是最早的虛數記號。但他認為這僅僅是個形式表示而已。2023年法國數學家笛卡爾,在其《幾何學》中第一次給出「虛數」的名稱,並和「實數」相對應。

5樓:匿名使用者

虛數:在數學裡,將平方是負數的數定義為純虛數.所有的虛數都是複數.這種數有一個專門的符號「i」(imaginary),它稱為虛數單位.定義為i^2=-1.

實數:有理數和無理數的總稱.其中無理數就是無限不迴圈小數,有理數就包括整數和分數.

實數包括有理數(能寫成分數的數:如2/3,2/1)和無理數(不能寫成分數的數,無限不迴圈小數),有理數包括整數和最簡分數.-1開方就得到虛數i; 虛數的一般式為:

c=a+bi,a和b是實數.如果b=0,則c叫實數; 如果a=0,則c叫純虛數.在復空間座標中,實數為x軸,虛數單位i為y軸單位,

形如z=a+ib(a,b為實數)的數稱為複數,a為z的實部,記做rel(z)=a,b為z的虛部,記為img(z)=b,當b非零時,稱z為虛數.i為x^2=-1的一個根,稱為虛數單位.

虛數運算和實數運演算法則完全一致,都滿足(乘法或加法)結合律,分配律和交換律.我們可以虛數當成多項式處理,當然用i^2=-1可以簡化.

複數域是實數域的擴張.

虛數開方採取實數配平方的方法.

虛數+虛數=虛數 或 實數

虛數+實數=虛數

虛數*虛數=虛數 或 實數

虛數/虛數=虛數 或 實數

虛數*實數=虛數 或 實數

虛數/實數=虛數

虛數的開方為虛數.

6樓:匿名使用者

虛數:在數學裡,將平方是負數的數定義為純虛數;實數:有理數和無理數的總稱.其中無理數就是無限不迴圈小數,有理數就包括整數和分數。

虛數:虛數可以指不實的數字或並非表明具體數量的數字。在數學中,虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i² = - 1。

虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。後來發現虛數a+b*i的實部a可對應平面上的橫軸虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。

基本運算:

加減與實數相同(a+bi)。

乘方(幕) (a+bi)^n=r^n∠nθ,乘方與實數運算相同,但(a+bi)^n不便於運算,一般轉化成r^n∠nθ再轉換回(a+bi)以簡化運算。

乘法與實數相同,可用 「i的平方=-1,i的立方=-i,i的4次方=1」 來加快運算。乘法也可轉化(一般不用),即(a+bi)(a+bi)=rr∠(θ1+θ2)。

意義上除法與實數相同(只是乘法的逆運算),但」(a+bi)/(a+bi)=c+di「屬於二元一次方程,雖有公式c=(aa+bb)/(a^2+b^2),d=(ab-ab)/(a^2+b^2),仍屬麻煩。除非除數是實數,一般都會進行轉化,即(a+bi)/(a+bi)=r/r∠(θ1-θ2)。

絕對值指點與原點的距離,而不是去符號,因此abs(a+bi)=r=√(a^2+b^2)。

平方根立方根是平方立方的逆運算,則有(a+bi)的n次方根=(a+bi)^(1/n)=r^(1/n)∠θ/n,轉化即可。

7樓:匿名使用者

實數包括有理數(能寫成分數的數:如2/3, 2/1)和無理數(不能寫成分數的數,無限不迴圈小數),有理數包括整數和最簡分數。

-1開方就得到虛數i;

虛數的一般式為:c=a+bi,a和b是實數.

如果b=0,則c叫實數;

如果a=0,則c叫純虛數。

在復空間座標中,實數為x軸,虛數單位i為y軸單位,

8樓:匿名使用者

實數包括有理數和無理數.其中無理數就是無限不迴圈小數,有理數包括無限迴圈小數、整數.

虛數應該也有很多種,但我只知道一種,如平方為負數的可稱為虛數.

暈樓上的,虛數都可以寫成分數,無理數不能?

總體來講,所有分數和整數都可以寫成小數.

9樓:百度使用者

1.複數中a+bi,b不等於零時bi叫虛數.在數學裡,將平方是負數的數定義為純虛數。

所有的虛數都是複數。這種數有一個專門的符號「i」(imaginary),它稱為虛數單位。 2.

複數是由實數和虛數構成,實數包括有理數和無理數,它表示實際的物理意義,而虛數不表示實際的物理意義,

10樓:百度使用者

虛數是無限且不迴圈的數

複數與實數的定義分別是什麼.?

11樓:匿名使用者

複數 開放分類: 數學、數學家、實數、虛數

定義[編輯本段]

複數就是實數和虛數的統稱

複數的基本形式是a+bi,其中a,b是實數,a稱為實部,bi稱為虛部,i是虛數單位,在複平面上,a+bi是點z(a,b)。z與原點的距離r稱為z的模|z|=√a方+b方

a+bi中:a=0為純虛數,b=0為實數,b不等於0為虛數。

複數的三角形式是 z=r[cosx+isinx]

中x,r是實數,rcosx稱為實部,irsinx稱為虛部,i是虛數單位。z與原點的距離r稱為z的模,x稱為輻角。

起源[編輯本段]

16世紀義大利米蘭學者卡當(jerome cardan1501—1576)在2023年發表的《重要的藝術》一書中,公佈了三次方程的一般解法,被後人稱之為「卡當公式」。他是第一個把負數的平方根寫到公式中的數學家,並且在討論是否可能把10分成兩部分,使它們的乘積等於40時,他把答案寫成=40,儘管他認為和這兩個表示式是沒有意義的、想象的、虛無飄渺的,但他還是把10分成了兩部分,並使它們的乘積等於40。給出「虛數」這一名稱的是法國數學家笛卡爾(1596—1650),他在《幾何學》(2023年發表)中使「虛的數」與「實的數」相對應,從此,虛數才流傳開來。

數系中發現一顆新星——虛數,於是引起了數學界的一片困惑,很多大數學家都不承認虛數。德國數學家萊布尼茨(1646—1716)在2023年說:「虛數是神靈遁跡的精微而奇異的隱避所,它大概是存在和虛妄兩界中的兩棲物」。

瑞士數學大師尤拉(1707—1783)說;「一切形如,習的數學武子都是不可能有的,想象的數,因為它們所表示的是負數的平方根。對於這類數,我們只能斷言,它們既不是什麼都不是,也不比什麼都不是多些什麼,更不比什麼都不是少些什麼,它們純屬虛幻。」然而,真理性的東西一定可以經得住時間和空間的考驗,最終佔有自己的一席之地。

法國數學家達朗貝爾(1717—1783)在2023年指出,如果按照多項式的四則運算規則對虛數進行運算,那麼它的結果總是的形式(a、b都是實數)(說明:現行教科書中沒有使用記號=-i,而使用=一1)。法國數學家棣莫佛(1667—1754)在2023年發現公式了,這就是著名的棣莫佛定理。

尤拉在2023年發現了有名的關係式,並且是他在《微分公式》(2023年)一文中第一次用i來表示一1的平方根,首創了用符號i作為虛數的單位。「虛數」實際上不是想象出來的,而它是確實存在的。挪威的測量學家成塞爾(1745—1818)在2023年試圖給於這種虛數以直觀的幾何解釋,並首先發表其作法,然而沒有得到學術界的重視。

德國數學家高斯(1777—1855)在2023年公佈了虛數的圖象表示法,即所有實數能用一條數軸表示,同樣,虛數也能用一個平面上的點來表示。在直角座標系中,橫軸上取對應實數a的點a,縱軸上取對應實數b的點b,並過這兩點引平行於座標軸的直線,它們的交點c就表示複數a+bi。象這樣,由各點都對應複數的平面叫做「複平面」,後來又稱「高斯平面」。

高斯在2023年,用實陣列(a,b)代表複數a+bi,並建立了複數的某些運算,使得複數的某些運算也象實數一樣地「代數化」。他又在2023年第一次提出了「複數」這個名詞,還將表示平面上同一點的兩種不同方法——直角座標法和極座標法加以綜合。統一於表示同一複數的代數式和三角式兩種形式中,並把數軸上的點與實數—一對應,擴充套件為平面上的點與複數—一對應。

高斯不僅把複數看作平面上的點,而且還看作是一種向量,並利用複數與向量之間—一對應的關係,闡述了複數的幾何加法與乘法。至此,複數理論才比較完整和系統地建立起來了。

經過許多數學家長期不懈的努力,深刻**並發展了複數理論,才使得在數學領域遊蕩了200年的幽靈——虛數揭去了神祕的面紗,顯現出它的本來面目,原來虛數不虛呵。虛數成為了數系大家庭中一員,從而實數集才擴充到了複數集。

隨著科學和技術的進步,複數理論已越來越顯出它的重要性,它不但對於數學本身的發展有著極其重要的意義,而且為證明機翼上升力的基本定理起到了重要作用,並在解決堤壩滲水的問題中顯示了它的威力,也為建立巨大水電站提供了重要的理論依據。

具體內容和應用

[編輯本段]

形如a+bi的數 。式中 a,b 為實數 ,i是 一個滿足i^2=-1的數 ,因為任何實數的平方不等於-1,所以 i不是實數,而是實數以外的新的數。

在複數a+bi中,a 稱為複數的實部,b稱為複數的虛部 ,複數的實部和虛部分別用rez和imz表示,即rez =a,imz=b。i稱為虛數單位。當虛部等於零時,這個複數就是實數;當虛部不等於零時,這個複數稱為虛數,虛數的實部如果等於零,則稱為純虛數。

由上可知,複數集包含了實數集,因而是實數集的擴張。複數的產生來自解代數方程的需要。16世紀,義大利數學家g.

卡爾達諾首先用公式表示出了一元三次方程的根,但公式中引用了負數開方的形式,並把 i=sqrt(-1) 當作數,與其他數一起參與運算。由於人們無法理解 i的實質,所以在很長時間內不承認負數的平方根也是數,而稱之為虛數。直到19世紀,數學家們對這些虛數參與實數的代數運算作出了科學的解釋,並在解方程和其他領域中使虛數得到了廣泛的應用,人們才認識了這種新的數。

複數的四則運算規定為:

(a+bi)+(c+di)=(a+c)+(b+d)i,

(a+bi)-(c+di)=(a-c)+(b-d)i,

(a+bi)

和漸漸結構相同的詞語,相同結構的詞語有什麼

慢慢,等等,淡淡,嘩嘩,滴滴,轟轟,噠噠,嗒嗒。祝開心,望!緩緩,輕輕,悄悄,瞅瞅,望 相同結構的詞語有什麼?就你所說相同結構的詞語,簡單分析有如下幾種情況 1 帶有虛詞成分 學以致用 亡命之徒 天作之合。2 帶有不表示實在數目的數詞 萬紫千紅 七上八下 一知半解。3 帶有重疊成分 想入非非 彬彬有...

鏡子中的自己和真實的自己有什麼相同和不同之處

相同 一樣的外貌.不同 不知道鏡子中的自己現在是什麼心情,開心嗎 還是傷心.不知道鏡子中的自己是否幸福.相同的就是一個樣 只不過生活中的自己現實和自己保護會多一點 鏡裡的卻可以看出自己的內心是怎麼樣的 想要什麼 想得到什麼 都可以你自己看得出來 一個是現實的一面 一個是內心的一面 相同 外在的一大部...

實數集與有理數集有什麼本質區別數集和實數集有什麼區別,還是就是一個概念,為何大學的高等數學教程

1 包含範圍不同 有理數集中包含了分數和整數 實數集包含了所有有理數和無理數。2 符號不同 有理數集可以用大寫黑正體符號q代表 實數集可以用大寫黑正體符號r代表。有理數集可以通過下列方式與整數集一一對應,也就是說有理數集與整數集等勢 1 1 1 2 2 1已經出現過 1 3 3 2 3 4 1已經出...