1樓:匿名使用者
準確的來說,德爾塔小於零時,方程有根,但是不是實數根,而是虛根。這類數屬於複數,實數包含在複數裡面的,希望回答對你有幫助
已知關於x的一元二次方程x²+x+m²-2m=0有一個實數根為-1,求m的值及方程的另一實根。
2樓:匿名使用者
m=2 或m=0
解答過程如下:
x1+x2=-1
∴-1+x2=-1
∴x2=0
x1x2=m²-2m
m²-2m=0
∴m=2 或m=0
擴充套件資料
一元二次方程組的解法:
首先當a不等於0時方程:ax^2+bx+c=0才是一元二次方程。
1、公式法:δ=b²-4ac,δ<0時方程無解,δ≥0時。
x=【-b±根號下(b²-4ac)】÷2a(δ=0時x只有一個)2、配方法:可將方程化為[x-(-b/2a)]²=(b²-4ac)/4a²
可解出:x=【-b±根號下(b²-4ac)】÷2a(公式法就是由此得出的)
3、直接開平方法與配方法相似。
4、因式分解法:核心當然是因式分解了看一下這個方程。
(ax+c)(bx+d)=0,得abx²+(ad+bc)+cd=0與一元二次方程ax^2+bx+c=0對比得a=ab,b=ad+bc,c=cd。所謂因式分解也只不過是找到a,b,c,d這四個數而已。
3樓:路人__黎
根據韋達定理:x1+x2=-1
x1•x2=m² - 2m
∵方程的一個實數根是-1
∴-1 + x2=-1,則x2=0
∴m² - 2m=-1•0
m² - 2m=0
m(m-2)=0
∴m=0或m=2
4樓:匿名使用者
設方程的另一個根為a,則根據一元二次方程根與係數的關係(韋達定理)可知:
-1+a=-1
-1•a=m²-2m
解得:a=0,m=0或2
經檢驗,a=0,m=0或2均符合要求!
所以,m=0或2,方程的另一個根為-1
5樓:燕兒飛何去
代進去就解決的問題,動個筆算一算
判斷二次函式根的個數的方法有哪些
6樓:匿名使用者
一、配方法:bai
1、二次
項係數du化為zhi1。
2、移項,左邊為二次dao項和一次項,右邊為常數專項。屬
3、配方,兩邊都加上一次項係數一半的平方,化成(x=a)^2=b的形式。
4、利用直接開平方法求出方程的解。
二、直接開平方法:
形如(x+a)^2=b,當b大於或等於0時,x+a=正負根號b,x=-a加減根號b;當b小於0時。方程無實數根。
三、公式法:
現將方程整理成:ax^2+bx+c=0的一般形式。再將abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大於或等於0)即可。
四、因式分解法:
如果一元二次方程ax^2+bx+c=0中等號左邊的代數式容易分解,那麼優先選用因式分解法。
擴充套件資料:
一元二次方程y=ax^2+bx+c(a≠0)中:
1、當δ>0時,方程ax^2+bx+c=0(a≠0)有兩個不等的實數根;
2、當δ=0時,方程ax^2+bx+c=0(a≠0)有兩個相等的實數根;
3、當δ<0時,方程ax^2+bx+c=0(a≠0)無實數根。
7樓:小小芝麻大大夢
1、當δ>0時,方程
來ax^2+bx+c=自0(a≠0)有兩個不等的實數根;
2、當baiδ=0時,方du程ax^2+bx+c=0(a≠0)有兩個相等zhi的實數根dao;
3、當δ
<0時,方程ax^2+bx+c=0(a≠0)無實數根。
擴充套件資料
一元二次方程解法:
一、直接開平方法
形如(x+a)^2=b,當b大於或等於0時,x+a=正負根號b,x=-a加減根號b;當b小於0時。方程無實數根。
二、配方法
1、二次項係數化為1。
2、移項,左邊為二次項和一次項,右邊為常數項。
3、配方,兩邊都加上一次項係數一半的平方,化成(x=a)^2=b的形式。
4、利用直接開平方法求出方程的解。
三、公式法
現將方程整理成:ax^2+bx+c=0的一般形式。再將abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大於或等於0)即可。
四、因式分解法
如果一元二次方程ax^2+bx+c=0中等號左邊的代數式容易分解,那麼優先選用因式分解法。
8樓:匿名使用者
二次函式在正常情況下應該是沒有判斷根的個數的(就我所知道的知識而專言),一般都是判斷屬其中自變數的取值範圍。
所以,我想樓主你問的應該是,一元二次方程y=ax^2+bx+c(a≠0)的根的判定式:△=b^2-4ac
(1 )△=b^2-4ac>0,方程有兩個不相等的實數根;
(2)△=b^2-4ac=0,方程有兩個相等的實數根,x1=x2=-b/2a;
(3)△=b^2-4ac<0,方程無實數根;
9樓:匿名使用者
就是書上的公式法最直接明瞭。
數學求根公式是什麼?
10樓:樂觀的高飛
求根公式如下:
a為二次項係數,b為一次項係數,c是常數。
一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程係數直接把根表示出來的公式。這個公式早在公元9世紀由中亞細亞的阿爾·花拉子模給出。
拓展資料:南宋數學家秦九韶至晚在1247 年就已經發現一元三次方程的求根公式,歐洲人在400 多年後才發現,但在中國的課本上這個公式仍是以那個歐洲人的名字來命名的。
一元三次方程ax^3 +bx^2 +cx+d=0的求根公式是2023年由義大利的卡當發表在《關於代數的**》一書中,人們就把它叫做「卡當公式」。可是事實上,發現公式的人並不是卡當本從,而是塔塔利亞(tartaglia n.,約 1499~1557).
發現此公式。
11樓:費倫茲
一元二次方程ax²+bx+c = 0的求根公式是 x = [(-b)±√(b²-4ac)] / 2a
拓展資料:「函式」由來中文數學書上使用的「函式」一詞是轉譯詞。是我國清代數學家李善蘭在翻譯《代數學》(2023年)一書時,把「function」譯成「函式」的。
中國古代「函」字與「含」字通用,都有著「包含」的意思。李善蘭給出的定義是:「凡式中含天,為天之函。『』
12樓:吠君子
什麼是韋達定理?韋達定理的推導過程,用一元二次方程求根公式
13樓:匿名使用者
一元二次方程:對於方程:ax2+bx+c=0:
b2-4ac叫做根的判別式.
①求根公式是x
當△>0時,方程有兩個不相等的實數根; 當△=0時,方程有兩個相等的實數根;
當△<0時,方程沒有實數根.注意:當△≥0時,方程有實數根.②若方程有兩個實數根x1和x2,並且二次三項式ax2+bx+c可分解為a(x-x1)(x-x2). ③以a和b為根的一元二次方程是x2-(a+b)x+ab=0.
14樓:煥煥
求根公式一般指的是,一元二次(或多次)的方程 程式化得出的的求根計算公式。
擴充套件資料公式法解一元二次方程的一種方法,也指套用公式計算某事物。另外還有配方法、十字相乘法、直接開平方法與分解因式法。公式表達了用配方法解一般的一元二次方程的結果。
根據因式分解與整式乘法的關係,把各項係數直接帶入求根公式,可避免配方過程而直接得出根,這種解一元二次方程的方法叫做公式法。
步驟1、化方程為一般式:
2、確定判別式,計算δ(希臘字母,音譯為戴爾塔)。
3、若δ>0,該方程在實數域內有兩個不相等的實數根:;
若δ=0,該方程在實數域內有兩個相等的實數根:
若δ<0,該方程在實數域內無解,但在虛數域內有兩個共軛復根,為
15樓:匿名使用者
a為二次項係數,b為一次項係數,c是常數。
一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程係數直接把根表示出來的公式。這個公式早在公元9世紀由中亞細亞的阿爾·花拉子模給出。
16樓:妥當
根本就不會用 有會用的教一下 謝謝
17樓:匿名使用者
1+1=3+5+3+6+5+52+4+8++65+5
二元一次方程求根公式?
18樓:摩羯啵啵波
設一個二元
一次方程為:ax^2+bx+c=0,其中a不為0,因為要滿足此方程為二元一次方程所以a不能等於0.
求根公式為:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a
擴充套件資料韋達定理說明了一元二次方程中根和係數之間的關係。
法國數學家弗朗索瓦·韋達於2023年在著作《論方程的識別與訂正》中建立了方程根與係數的關係,提出了這條定理。 由於韋達最早發現代數方程的根與係數之間有這種關係,人們把這個關係稱為韋達定理。
19樓:柿子的丫頭
[-b+√(b^2-4ac)]/2a
[-b-√(b^2-4ac)]/2a
如果一個方程含有兩個未知數,並且所含未知項都為一次方,那麼這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有一個解,有時沒有解,有時有無數個解。如一次函式中的平行,。
二元一次方程的一般形式:ax+by+c=0其中a、b不為零。這就是二元一次方程的通俗定義。
二元一次方程組的通俗定義:兩個結合在一起的共含有兩個未知數的一次方程,叫二元一次方程組。專業定義:
一個含有兩個未知數,並且未知項的指數都是1的整式方程,叫二元一次方程(linear equation of two unknowns)。
二元一次方程組專業定義:由兩個二元一次方程所組成的方程組,叫二元一次方程組(system of linear equation of two unknowns)。
二元一次方程的解:使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解.二元一次方程組的解:二元一次方程組的兩個公共解,叫做二元一次方程組的解。
標準二元一次方程組包含六個係數,兩個未知數,形式為:
式1,ax+by=c
式2,a2x+b2y=c2
一般解法,消元:將方程組中的未知數個數由多化少,逐一解決. 二元一次方程組(y=1 x=1)
加減消元法:將方程組中的兩個等式用相加或者是相減的方法,抵消其中一個未知數,從而達到消元的目的,將方程組中的未知數個數由多化少,逐一解決.
代入消元法:通過「代入」消去一個未知數,將方程組轉化為一元一次方程來解,這種解法叫做代入消元法,簡稱代入法。一般不會用到。
擴充套件資料
二元一次方程組的解法.
(1)代入消元法:解方程組的基本思路是「消元」一把「二元」變為「一元」,主要步驟是,將其中一個方程中
的某個未知數用含有另一個未知數的代數式表示出來,並代人另一個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代入法.
(2)加減消元法:通過方程兩邊分別相加(減)消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法.
一元二次方程解法大全,一元二次方程的解法
暈 去找你老師要啊。百科上搜 很好找 建議問老師 因為老師是講的最容易使你理解的 並推薦使用求根公式 希望樓主。一元二次方程的解法 一般解法。1.配方法。可解全部一元二次方程 如 解方程 x 2 2x 3 0 解 把常數項移項得 x 2 2x 3 等式兩邊同時加1 構成完全平方式 得 x 2 2x ...
一元二次方程根與係數的關係,一元二次方程中 根與係數的關係是什麼
根與係數的關係簡單相關係數是用來度量定量變數間的線性相關關係。復相關係數是因變數與多個自變數之間的相關關係。例如,某種商品的需求量與其 水平 職工收入水平等現象之間呈現複相關系。韋達定理最重要的貢獻是對代數學的推進,它最早系統地引入代數符號,推進了方程論的發展,用字母代替未知數,指出了根與係數之間的...
一元二次方程根與係數的關係,一元二次方程中 根與係數的關係是什麼
由於兩根中只有一個實根為正數,且兩根的絕對值比為1 4,由此得出方程 x1 4x2 由根的和,積關係得 x1 x2 4 k 5 x1 x2 k 1 解 方程組,得 得k 4或 7 y x 2 有相同的實根0 一元二次方程根與係數的關係 設x1和x2為方程ax 2 bx c 0的兩個根 那麼 x1 x...