1樓:匿名使用者
採用數學歸納法
sn=1²+2²+3²+4²+...+n²
由於n²=n(n+1)-n
即1²=1×(1+1)-1=1×2-1
2²=2×(2+1)-2=2×3-2
3²=3×(3+1)-3=3×4-3
4²=4×(4+1)-4=4×5-4
.....
所以sn=1²+2²+3²+4²+...+n² =1×2-1+2×3-2+3×4-3+4×5-4+...+n(n+1)-n
=【1×2+2×3+3×4+4×5+...+n(n+1)】-(1+2+3+4+...+n)
n(n+1)=【n(n+1)(n+2)-(n-1)n(n+1)】/3
所以1×2+2×3+3×4+4×5+...+n(n-1)
=(1×2×3-0×1×2)/3+(2×3×4-1×2×3)/3+(3×4×5-2×3×4)/3+(4×5×6-3×4×5)/3+...+【n(n+1)(n+2)-(n-1)n(n+1)】/3
=【1×2×3-0+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+...+n(n+1)(n+2)-(n-1)n(n+1)】/3 =【n(n+1)(n+2)】/3
所以sn=【1×2+2×3+3×4+4×5+...+n(n+1)】-(1+2+3+4+...+n)
=【n(n+1)(n+2)】/3-【n(n+1)】/2
=【2n(n+1)(n+2)】/6-【3n(n+1)】/6
=【2n(n+1)(n+2)-3n(n+1)】/6
=【n(n+1)(2n+4-3)】/6
=【n(n+1)(2n+1)】/6
2樓:西域牛仔王
公式:1²+2²+3²+......+n²= 1/6*n(n+1)(2n+1),
所以 1²+2²+3²+.....+(n-1)²=1/6*(n-1)n(2n-1)。
數列求和 i的平方相加(1+4+9+16+.......n的平方) 求sn 我要過程,
3樓:雨說情感
1²+2²+3²+...+n²=n(n+1)(2n+1)/6證明如下:排列組合法)
由於因此我們有
等於由於
於是我們有
擴充套件資料1、一般的數列求和問題應從通項公式入手,若無通項公式,應先求通項公式,然後根據通項公式的特點選擇合適的方法求和。
2、解決非等差、等比數列的求和問題主要有兩種方法,一為將非等差、等比數列問題轉化為等差、等比數列問題;二為不能轉化為等差、等比數列的問題,可以考慮利用倒序相加法、錯位相減法、裂項法、分組求和法等進行求和。
3、對於等比數列的求和問題,要注意判斷公比是否為1,然後進行分類討論.等差數列的求和公式有多種形式,要注意根據已知條件選擇合適的求和公式。
4樓:匿名使用者
1²+2²+3²+...+n²=n(n+1)(2n+1)/6
證明:(n+1)³=n³+3n²+3n+1
(n+1)³-n³=3n²+3n+1
n³-(n-1)³=3(n-1)²+3(n-1)+1
...3³-2³=3*2²+3*2+1
2³-1³=3*1²+3*1+1
兩邊分別相加得
(n+1)³-1³=3*(1²+2²+...+n²)+3(1+2+...+n)+1*n
(n³+3n²+3n)-3n(n+1)/2-n=3sn
3sn=n(2n²+3n+1)/2=n(n+1)(2n+1)/2
sn=n(n+1)(2n+1)/6
擴充套件資
料
公式法等差數列求和公式:
(首項+末項)×項數/2
舉例:1+2+3+4+5+6+7+8+9=(1+9)×9/2=45
等比數列求和公式:
差比數列求和公式:
a:等差數列首項
d:等差數列公差
e:等比數列首項
q:等比數列公比
其他錯位相減法
適用題型:適用於通項公式為等差的一次函式乘以等比的數列形式(等差等比數列相乘)
、分別是等差數列和等比數列.
例如:______①
tn=上述式子/(1-q)
此外.①式可變形為
sn為的前n項和.
此形式更理解也好記
倒序相加法
這是推導等差數列的前n項和公式時所用的方法,就是將一個數列倒過來排列(反序),再把它與原數列相加,就可以得到n個(a1+an)
sn =a1+ a2+ a3+...... +an
sn =an+ an-1+an-2...... +a1
上下相加得sn=(a1+an)n/2
分組法有一類數列,既不是等差數列,也不是等比數列,若將這類數列適當拆開,可分為幾個等差、等比或常見的數列,然後分別求和,再將其合併即可.
例如:an=2n+n-1,可看做是2n與n-1的和
sn=a1+a2+...+an
=2+0+22+1+23+2+...+2n+n-1
=(2+22+...+2n)+(0+1+...+n-1)
=2(2n-1)/(2-1)+(0+n-1)n/2
=2n+1+n(n-1)/2-2
5樓:匿名使用者
解:採用數學歸納法可以計算
sn=1²+2²+3²+4²+...+n²
由於n²=n(n+1)-n
即1²=1×(1+1)-1=1×2-1
2²=2×(2+1)-2=2×3-2
3²=3×(3+1)-3=3×4-3
4²=4×(4+1)-4=4×5-4
.....
所以sn=1²+2²+3²+4²+...+n²
=1×2-1+2×3-2+3×4-3+4×5-4+...+n(n+1)-n
=【1×2+2×3+3×4+4×5+...+n(n+1)】-(1+2+3+4+...+n)
以為n(n+1)=【n(n+1)(n+2)-(n-1)n(n+1)】/3
所以1×2+2×3+3×4+4×5+...+n(n-1)
=(1×2×3-0×1×2)/3+(2×3×4-1×2×3)/3+(3×4×5-2×3×4)/3+(4×5×6-3×4×5)/3+...+【n(n+1)(n+2)-(n-1)n(n+1)】/3
=【1×2×3-0+2×3×4-1×2×3+3×4×5-2×3×4+4×5×6-3×4×5+...+n(n+1)(n+2)-(n-1)n(n+1)】/3
=【n(n+1)(n+2)】/3
所以sn=【1×2+2×3+3×4+4×5+...+n(n+1)】-(1+2+3+4+...+n)
=【n(n+1)(n+2)】/3-【n(n+1)】/2
=【2n(n+1)(n+2)】/6-【3n(n+1)】/6
=【2n(n+1)(n+2)-3n(n+1)】/6
=【n(n+1)(2n+4-3)】/6
=【n(n+1)(2n+1)】/6
6樓:該死大本營
設:s=12+22+32+…+n2
另設:s1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步設題是解題的關鍵,一般人不會這麼去設想。有了此步設題,第一:
s1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=s,(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以為(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 s1=2s+n3+2n(1+2+3+…+n)………………………………………………..(1) 第二:s1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以寫為:
s1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中:
22+42+62…+(2n)2=22(12+22+32+…+n2)=4s……………………………………..(2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2
= (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n
=4s-4(1+2+3+…+n)+n……………………………………………………………..(3) 由(2)+ (3)得:s1=8s-4(1+2+3+…+n)+n…………………………………………..
(4) 由(1)與(4)得:2s+ n3+2n(1+2+3+…+n) =8s-4(1+2+3+…+n)+n 即:6s= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1) = n(n+1)(2n+1) s= n(n+1)(2n+1)/ 6
亦即:s=12+22+32+…+n2= n(n+1)(2n+1)/6……………………………………(5)
7樓:匿名使用者
這一串的計算方法早就分給老師了,不分給老師的話,我還跟老師下一節沒有,只是一條與下一屆的學生。
平方怎麼算 200
8樓:demon陌
平方是一種運算,比如,a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等於a的2次方),例如4×4=16,8×8=64,平方符號為2。
副標題回答:
平方=長*寬=130cm*80cm=10400cm*cm
9樓:happy痴
平方米公式的計算方法,其實很簡單
10樓:定玉枝哈月
平方是面積單位,立方是體積單位。
4m寬和3.5m寬的應該分開計算,然後彙總。
如果是算面積,應該分別用上述寬度乘以各段的長度後,再把結果相加。如果是算體積,再用面積總和乘以厚度就行。
這裡有兩個問題要注意:
1、兩層的做法是否一樣,如果不一樣,應該分別計算,因為做法不同,**也不一樣。
2、通常做法是,下面一層要比上面一層寬一些,一般每側增加的的寬度不小於下面一層的厚度。如果這個少算了,造價上要吃虧的。
1的平方 2的平方 3的平方 4的平方n的平方這通項
1 2 2 2 3 2 n 2 n n 1 2n 1 6 當n 1時,1 2 1 1 1 2 1 6 1,成立。設當n k時,1 2 2 2 3 2 k 2 k k 1 2k 1 6成立。則當n k 1時,1 2 2 2 3 2 k 2 k k 1 2k 1 6 k 1 2 k 1 k 2k 1 6...
複數1 i的n次方怎麼計算,複數1開n次方,所有根的和是多少。怎麼算?
用2項式定理算 1 i 1 i 1 i 2i 1 i 1 i 1 i 2 i 1 1 i 1 i 1 i 1 i 4依次下去。當n 4k 1,s 4 k 1 i n 4k 2,s 4 k2i n 4k 3,s 4 k2 i 1 n 4k,s 4 k,k自然數 兩個複數 x yi 與 x yi 稱為共...
求日語考試N1分數的計算方法,買了N1模擬題,做完後不知道怎麼算分了
日語能力考的算分bai 方法是不du可能知道的,對於日語zhi能力考dao試的真題,是先批改出所有的題版目的權對錯,然後根據所有考生的題目的正確率和錯誤率來給每條題目定一個難度係數的分數,也就是說如果有一題,其他人都錯了,而你做對了,那麼這個題目的分值就會非常的高,而反之,如果一個題目,其他人都對了...