1樓:李愷怡
後一個數是前兩個數的和。繁分數分母總是大於1,所以的值總是小於1而分子總是取先前的分母,除了第一次分子分母均是1時,值等於1/2,後來的值均大於1/2
而每次計算繁分數時,繁分數分母中的分母總是不變,分子總是先前分子與分母之和
這就完全符合斐波那契數列的規律
那麼這個最簡單的無窮連分數的值是多少呢?
也就是斐波那契數列連續兩項之比的極限是多少呢?
設:x=1/(1+1/(1+1/(1+...)))顯然有:x=1/(1+x)
即:x^2+x-1=0
x=(√5-1)/2=0.618...(捨去負值)這就是**分割比例,也是斐波那契數列連續兩項之比的極限
2樓:我叫
斐波那契數列也叫兔子數列,刻畫了兔子繁殖的情況。其實斐波那契數列十幾項時已經很大了,所以老大,最好不用計算機來計算。
3樓:
1、1、2、3、5、8、13、21、……第三項以後是前兩項之和 ,以此類推
4樓:內個你在幹啥
根據規律第n項為前兩項之和,以此類推
5樓:匿名使用者
第一項和第二項沒有規律
第三項以後是前兩項之和
斐波那契數列有啥規律?
6樓:祥運網科技
「斐波那契數列」或「斐波那切數列」)是一個非常美麗、和諧的數列,它的形狀可以用排成螺旋狀的一系列正方形來說明(如右詞條圖),起始的正方形(圖中用灰色表示)的邊長為1,在它左邊的那個正方形的邊長也是1 ,在這兩個正方形的上方再放一個正方形,其邊長為2,以後順次加上邊長為3、5、8、13、2l……等等的正方形。這些數字每一個都等於前面兩個數之和,它們正好構成了斐波那契數列。「斐波那契數列」的發明者,是義大利數學家列昂納多·斐波那契(leonardo fibonacci,生於公元2023年,卒於2023年。
籍貫大概是比薩)。他被人稱作「比薩的列昂納多」。2023年,他撰寫了《珠算原理》(liber abaci)一書。
他是第一個研究了印度和阿拉伯數學理論的歐洲人。他的父親被比薩的一家商業團體聘任為外交領事,派駐地點相當於今日的阿爾及利亞地區,列昂納多因此得以在一個阿拉伯老師的指導下研究數學。他還曾在埃及、敘利亞、希臘、西西里和普羅旺斯研究數學。
斐波那契數列指的是這樣一個數列:1,1,2,3,5,8,13,21,34…… 這個數列從第三項開始,每一項都等於前兩項之和。它的通項公式為:
(1/√5)* (√5表示5的算術平方根) (19世紀法國數學家敏聶(jacques phillipe marie binet 1786-1856)很有趣的是:這樣一個完全是自然數的數列,通項公式居然是用無理數來表達的。 斐波拉契數列的出現13世紀初,歐洲最好的數學家是斐波拉契;他寫了一本叫做《算盤書》的著作,是當時歐洲最好的數學書。
書中有許多有趣的數學題,其中最有趣的是下面這個題目: 「如果一對大家都叫它「斐波拉契數列」,又稱「兔子數列」。這個數列有許多奇特的的性質,例如,從第3個數起,每個數與它後面那個數的比值,都很接近於0.
618,正好與大名鼎鼎的「**分割律」相吻合。人們還發現,連一些生物的生長規律,在某種假定下也可由這個數列來刻畫呢。
7樓:西域牛仔王
1,1,2,3,5,8,13,21,34,55,89,144,。。。
任意連續 10 項的和,都等於這十項中的第 7 項的 11 倍 。
8樓:歧花納和玉
規定前兩項為1,1
第1項+第2項=第3項
1+1=2
第2項+第3項=第4項
1+2=3
第3項+第4項=第5項
2+3=5
第n-2項+第n-1項=第n項
10階臺階的走法等於斐波那契額第11項,則=89
9樓:伍馥樹高邈
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,………………
前兩個數相加等於本身,n+(n+1)=n+2
10樓:第攸苗軒
斐波納契數列(fibonacci
sequence),又稱**分割數列,指的是這樣一個數列:1、1、2、3、5、8、13、21、……在數學上,斐波納契數列以如下被以遞迴的方法定義:f0=0,f1=1,fn=f(n-1)+f(n-2)(n>=2,n∈n*)在現代物理、準晶體結構、化學等領域,斐波納契數列都有直接的應用,為此,美國數學會從2023年代起出版了《斐波納契數列》季刊,專門刊載這方面的研究成果。
滿意回答
滿意回答
滿意回答
滿意回答
滿意回答
滿意回答
滿意回答
滿意回答
滿意回答
11樓:花帥太史竹悅
後面的一個數是前面兩個數的和!
an=a(n-1)+a(n-2)
斐波那契數列的全部規律
12樓:匿名使用者
除了an=an-1+an-2外,還可以證明它的通項公式為:
a(n)=(((1+5^(1/2))/2)^n-((1-5^(1/2))/2)^n)/5^(1/2)
斐波那契數列都有哪些規律
13樓:匿名使用者
斐波那契數列中的斐波那契數會經常出現在我們的眼前——比如松果、鳳梨、樹葉的排列、某些花朵的花瓣數(典型的有向日葵花瓣),蜂巢,蜻蜓翅膀,超越數e(可以推出更多),**矩形、**分割、等角螺線,十二平均律等。
合併圖冊(2張)
斐波那契數與植物花瓣3………………………
百合和蝴蝶花5……………………
藍花耬鬥菜、金鳳花、飛燕草、毛茛花8………………………
翠雀花13………………………
金盞和玫瑰21……………………
紫宛34、55、89……………雛菊
斐波那契數還可以在植物的葉、枝、莖等排列中發現。例如,在樹木的枝幹上選一片葉子,記其為數0,然後依序點數葉子(假定沒有折損),直到到達與那些葉子正對的位置,則其間的葉子數多半是斐波那契數。葉子從一個位置到達下一個正對的位置稱為一個循回。
葉子在一個循回中旋轉的圈數也是斐波那契數。在一個循回中葉子數與葉子旋轉圈數的比稱為葉序(源自希臘詞,意即葉子的排列)比。多數的葉序比呈現為斐波那契數的比。
**分割
隨著數列項數的增加,前一項與後一項之比越來越逼近**分割的數值0.6180339887..…
楊輝三角
將楊輝三角左對齊,成如圖所示排列,將同一斜行的數加起來,即得一數列1、1、2、3、5、8、……
公式表示如下:
f⑴=c(0,0)=1。
f⑵=c(1,0)=1。
f⑶=c(2,0)+c(1,1)=1+1=2。
f⑷=c(3,0)+c(2,1)=1+2=3。
f⑸=c(4,0)+c(3,1)+c(2,2)=1+3+1=5。
f⑹=c(5,0)+c(4,1)+c(3,2)=1+4+3=8。
f⑺=c(6,0)+c(5,1)+c(4,2)+c(3,3)=1+5+6+1=13。
……f(n)=c(n-1,0)+c(n-2,1)+…+c(n-1-m,m) (m<=n-1-m)
矩形面積
斐波那契數列與矩形面積的生成相關,由此可以匯出一個斐波那契數列的一個性質。
斐波那契數列前幾項的平方和可以看做不同大小的正方形,由於斐波那契的遞推公式,它們可以拼成一個大的矩形。這樣所有小正方形的面積之和等於大矩形的面積。則可以得到如下的恆等式:
質數數量
斐波那契數列的整除性與質數生成性
每2個連續的數中有且只有一個被2整除,
每3個連續的數中有且只有一個被3整除,
每4個連續的數中有且只有一個被5整除,
每5個連續的數中有且只有一個被8整除,
每6個連續的數中有且只有一個被13整除,
每7個連續的數中有且只有一個被21整除,
每8個連續的數中有且只有一個被34整除,
.......
我們看到第5、7、11、13、17、23位分別是質數:5,13,89,233,1597,28657(第19位不是)
斐波那契數列的質數無限多嗎?
尾數迴圈
斐波那契數列的個位數:一個60步的迴圈
11235,83145,94370,77415,61785.38190,
99875,27965,16730,33695,49325,72910…
進一步,斐波那契數列的最後兩位數是一個300步的迴圈,最後三位數是一個1500步的迴圈,最後四位數是一個15000步的迴圈,最後五位數是一個150000步的迴圈。
自然界中「巧合」
斐波那契數列在自然科學的其他分支,有許多應用。例如,樹木的生長,由於新生的枝條,往往需要一段「休息」時間,供自身生長,而後才能萌發新枝。所以,一株樹苗在一段間隔,例如一年,以後長出一條新枝;第二年新枝「休息」,老枝依舊萌發;此後,老枝與「休息」過一年的枝同時萌發,當年生的新枝則次年「休息」。
這樣,一株樹木各個年份的枝椏數,便構成斐波那契數列。這個規律,就是生物學上著名的「魯德維格定律」。
另外,觀察延齡草、野玫瑰、南美血根草、大波斯菊、金鳳花、耬鬥菜、百合花、蝴蝶花的花瓣,可以發現它們花瓣數目具有斐波那契數:3、5、8、13、21、……
其中百合花花瓣數目為3,梅花5瓣,飛燕草8瓣,萬壽菊13瓣,向日葵21或34瓣,雛菊有34,55和89三個數目的花瓣。
斐波那契螺旋:具有13條順時針旋轉和21條逆時針旋轉的螺旋的薊的頭部
這些植物懂得斐波那契數列嗎?應該並非如此,它們只是按照自然的規律才進化成這樣。這似乎是植物排列種子的「優化方式」,它能使所有種子具有差不多的大小卻又疏密得當,不至於在圓心處擠了太多的種子而在圓周處卻又稀稀拉拉。
葉子的生長方式也是如此,對於許多植物來說,每片葉子從中軸附近生長出來,為了在生長的過程中一直都能最佳地利用空間(要考慮到葉子是一片一片逐漸地生長出來,而不是一下子同時出現的),每片葉子和前一片葉子之間的角度應該是222.5度,這個角度稱為「**角度」,因為它和整個圓周360度之比是**分割數0.618033989……的倒數,而這種生長方式就決定了斐波那契螺旋的產生。
向日葵的種子排列形成的斐波那契螺旋有時能達到89,甚至144條。2023年,兩位法國科學家通過對花瓣形成過程的計算機**實驗,證實了在系統保持最低能量的狀態下,花朵會以斐波那契數列長出花瓣。
數字謎題
三角形的三邊關係定理和斐波那契數列的一個聯絡:
現有長為144cm的鐵絲,要截成n小段(n>2),每段的長度不小於1cm,如果其中任意三小段都不能拼成三角形,則n的最大值為多少?
分析:由於形成三角形的充要條件是任何兩邊之和大於第三邊,因此不構成三角形的條件就是存在兩邊之和不超過另一邊。截成的鐵絲最小為1,因此可以放2個1,第三條線段就是2(為了使得n最大,因此要使剩下來的鐵絲儘可能長,因此每一條線段總是前面的相鄰2段之和),依次為:
1、1、2、3、5、8、13、21、34、55,以上各數之和為143,與144相差1,因此可以取最後一段為56,這時n達到最大為10。
我們看到,「每段的長度不小於1」這個條件起了控制全域性的作用,正是這個最小數1產生了斐波那契數列,如果把1換成其他數,遞推關係保留了,但這個數列消失了。這裡,三角形的三邊關係定理和斐波那契數列發生了一個聯絡。
在這個問題中,144>143,這個143是斐波那契數列的前n項和,我們是把144超出143的部分加到最後的一個數上去,如果加到其他數上,就有3條線段可以構成三角形了。
影視作品中的斐波那契數列
斐波那契數列在歐美可謂是盡人皆知,於是在電影這種通俗藝術中也時常出現,比如在風靡一時的《達芬奇密碼》裡它就作為一個重要的符號和情節線索出現,在《魔法玩具城》裡又是在店主招聘會計時隨口問的問題。可見此數列就像**分割一樣流行。可是雖說叫得上名,多數人也就背過前幾個數,並沒有深入理解研究。
在電視劇中也出現斐波那契數列,比如:日劇《考試之神》第五回,義嗣做全國模擬考試題中的最後一道數學題~在fox熱播美劇《fringe》中更是無數次引用,甚至作為全劇宣傳海報的設計元素之一。
斐波那契數列數字排列規律為1,1,2,3,5,8,
include int main return 0 按1,1,2,3,5,8,13,21,的規律排列,第500個數是奇數還是偶數?詳細點謝謝 在斐波那契 bai數列的第 du500個數中是奇數。zhi 數列1,1,2,3,5,8,13,21,34,55,dao 的排列規律是版 前兩個權數是1,從第3...
用堆疊實現斐波那契數列不要遞迴
斐波那契數列,斐波那契數列 的發明者,是義大利數學家列昂納多 斐波那契 leonardo fibonacci,生於公元1170年,卒於1240年。籍貫大概是比薩 他被人稱作 比薩的列昂納多 1202年,他撰寫了 珠算原理 liber abaci 一書。他是第一個研究了印度和阿拉伯數學理論的歐洲人。他...
證明 斐波那契數列中最大的立方數是
a n 2 an a n 1 a1 0,a2 1.a n 2 m 3,m為大於2的正整數.它的通項公式為 an 1 5 1 2 1 5 1 2 2 n 1 5 1 2 2 n 由二項式定理 a b n c n,r a n r b r r從0到n,求和 記求和符號p r,0,n 1 5 1 2 2 n...