1樓:答得多
裂項法bai的規律是:k/[n(n+k)] = 1/n-1/(n+k) ,(通常分子du寫在「/"之前zhi,分母寫在"/"之後)
在本dao題中,k = 1 ,並且專在公式前面加了個負號屬,
則規律變成:-1/[n(n+1)] = -1/n+1/(n+1) 。
-1×1/2=-1+1/2,-1/2×1/3=-1/2+1/3你發現的規律是什麼.用發現規律計算
2樓:匿名使用者
答案是:-2012/2013
解答方法和過程為:這是一個可以裂項的數列求和問題.即:裂項相消法.
每一項裂成兩項,且前後項之間一正一負,可以抵消.
原式=-1+1/2-1/2+1/3-1/3+1/4-1/4+1/5-......-1/2011+1/2012-1/2012+1/2013=-1+1/2013=-2012/2013
1+1/2+1/3+1/4+,,,,+1/n=公式
3樓:小肥肥啊
利用「尤拉公式」:1+1/2+1/3+......+1/n=ln(n)+c,c為尤拉常數 數值是0.5772。
則1+1/2+1/3+1/4+...+1/2007+1/2008=ln(2008)+c=8.1821(約) 。
就不出具體數字的,如果n=100那還可以求的,然而這個n趨近於無窮,所以算不出的。
具體證明過程如下:
首先我們可以知道實數包括有理數和無理數,而有理數又包括有限小數和無限迴圈小數,有理數都可以劃成兩個有限互質整數相除的形式(整數除外)。
而1+1/2+1/3+1/4+1/5+...+1/n (n為無限大)通分以後的分子和分母都是無窮大,不是有限整數,且不能約分,所以它不屬於有理數,因此它是無理數。
擴充套件資料:
尤拉公式的驗證
( 1)當 r= 2時 ,由說明 1,這兩個區域可想象為 以赤道為邊界的兩個半球面 ,赤道上有兩個「頂點」 將赤道分成兩條「邊界」,即 r= 2,v= 2,e= 2;於是 r+ v- e= 2,尤拉定理成立.。
( 2)設 r= m(m≥ 2)時尤拉定理成立 ,下面證明 r= m+ 1時尤拉定理也成立 。
由說明 2,我們在 r= m+ 1的地圖上任選一個 區域 x ,則 x 必有與它如此相鄰的區域 y ,使得在 去掉 x 和 y 之間的唯一一條邊界後 ,地圖上只有 m 個區域了。
在去掉 x 和 y 之間的邊界後 ,若原該邊界兩端 的頂點現在都還是 3條或 3條以上邊界的頂點 ,則該頂點保留 ,同時其他的邊界數不變;若原該邊界一 端或兩端的頂點現在成為 2條邊界的頂點 。
則去掉該頂點 ,該頂點兩邊的兩條邊界便成為一條邊界 。於是 ,在去掉 x 和 y之間的唯一一條邊界時只有三種 情況:
1減少一個區域和一條邊界;
2減少一個區 域、一個頂點和兩條邊界;
3減少一個區域、兩個頂 點和三條邊界;
即在去掉 x 和 y 之間的邊界時 ,不 論何種情況都必定有「減少的區域數 + 減少的頂點數 = 減少的邊界數」我們將上述過程反過來 (即將 x 和 y之間去掉的邊 界又照原樣畫上 ) ,就又成為 r= m+ 1的地圖了 ,在 這一過程中必然是「增加的區域數 + 增加的頂點數 = 增加的邊界數」。
因此 ,若 r= m (m≥2)時尤拉定理成立 ,則 r= m+ 1時尤拉定理也成立.。
由 ( 1)和 ( 2)可知 ,對於任何正整數 r≥2,尤拉 定理成立。
柯西的證明
第一個尤拉公式的嚴格證明,由20歲的柯西給出,大致如下:
從多面體去掉一面,通過把去掉的面的邊互相拉遠,把所有剩下的面變成點和曲線的平面網路。不失一般性,可以假設變形的邊繼續保持為直線段。
正常的面不再是正常的多邊形即使開始的時候它們是正常的。但是,點,邊和麵的個數保持不變,和給定多面體的一樣(移去的面對應網路的外部。)
重複一系列可以簡化網路卻不改變其尤拉數(也是尤拉示性數)
的額外變換。
若有一個多邊形面有3條邊以上,我們劃一個對角線。這增加一條邊和一個面。繼續增加邊直到所有面都是三角形。
除掉只有一條邊和外部相鄰的三角形。這把邊和麵的個數各減一而保持頂點數不變。
(逐個)除去所有和網路外部共享兩條邊的三角形。這會減少一個頂點、兩條邊和一個面。
重複使用第2步和第3步直到只剩一個三角形。
推理證明
設想這個多面體是先有一個面,然後將其他各面一個接一個地添裝上去的.因為一共有f個面,因此要添(f-1)個面。
考察第i個面,設它是n邊形,有n個頂點,n條邊,這時e=v,即稜數等於頂點數。
添上第ii個面後,因為一條稜與原來的稜重合,而且有兩個頂點和第i個面的兩個頂點重合,所以增加的稜數比增加的頂點數多1,因此,這時e=v+1。
以後每增添一個面,總是增加的稜數比增加的頂點數多1,例如
增添兩個面後,有關係e=v+2;
增添三個面後,有關係e=v+3;
......增添(f-2)個面後,有關係e=v+ (f-2)。
最後增添一個面後,就成為多面體,這時稜數和頂點數都沒有增加.因此,關係式仍為e=v+ (f-2),即f+v=e+2,這個公式叫做尤拉公式,它表明2這個數是簡單多面體表面在連續變形下不變的數。
4樓:吳凱磊
隨後很長一段時間,人們無法使用公式去逼近調和級數,直到無窮級數理論逐步成熟。2023年牛頓在他的著名著作《流數法》中推匯出第一個冪級數:
ln(1+x) = x - x^2/2 + x^3/3 - ...
euler(尤拉)在2023年,利用newton的成果,首先獲得了調和級數有限多項和的值。結果是:
相關書籍
相關書籍
1+1/2+1/3+1/4+...+1/n= ln(n+1)+r(r為常量)
他的證明是這樣的:
該式子為調和級數
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
根據newton的冪級數有:
ln(1+1/x) = 1/x - 1/2x^2 + 1/3x^3 - ...
於是:1/x = ln((x+1)/x) + 1/2x^2 - 1/3x^3 + ...
代入x=1,2,...,n,就給出:
1/1 = ln(2) + 1/2 - 1/3 + 1/4 -1/5 + ...
1/2 = ln(3/2) + 1/2*4 - 1/3*8 + 1/4*16 - ...
......
1/n = ln((n+1)/n) + 1/2n^2 - 1/3n^3 + ...
相加,就得到:
1+1/2+1/3+1/4+...1/n = ln(n+1) + 1/2*(1+1/4+1/9+...+1/n^2) - 1/3*(1+1/8+1/27+...
+1/n^3) + ......
後面那一串和都是收斂的,我們可以定義
1+1/2+1/3+1/4+...1/n = ln(n+1) + r
euler近似地計算了r的值,約為0.5772156649。這個數字就是後來稱作的尤拉常數。不過遺憾的是,我們對這個常量還知之甚少,連這個數是有理數還是無理數都還是個謎。
找規律1,2,4,816,32按規律第n個數是什麼
由題得 1 2 2 2 1 2 4 4 1 1 2 8 以此類推第n個數是 2的 n 1 次方 1 的n次方 用分段的 1,n 1 1 n 1 乘以2 n 1 n大於或等於1 找規律 1,2,4,8,16,32.第n個數是什麼 2 的n 1次方 即 2 的n 1次方的相反數。1 的n次方乘以2的 n...
3拍的強弱規律是什麼43拍的強弱規律是什麼?
應該是3 4拍子,稱為 四三拍子 或者 三拍子 也稱為 華爾茲 強弱規律是這樣 2 4拍子 強 弱 3 4拍子 強 弱 弱 4 4拍子 強 弱 次強 弱 4 3拍是以四分音符為一拍每小節有三拍每拍的時值由樂曲的速度決定,是樂曲中一種常見的節拍。4 3拍的規律是強 弱 弱 而所說的強,就是唱響一點 弱...
法語動詞變位規律是什麼,法語的動詞變位是什麼啊?
第一 不要輕視甚至忽視動詞變位的重要意義 在法語裡面,不同的語式 時態都是通過動詞變位來表示的,如果動詞不變位,那就根本沒有辦法表示出真正的含義。有很多同學在初學階段,怕麻煩,就只記憶動詞的不定式 即原形 這樣開始好像還湊合,但是如果稍稍深入就基本沒有辦法順利前進了。所有一定要知道,動詞變位掌握好了...