用判別式求函式值域為什麼大於等於

2021-03-03 20:27:45 字數 3046 閱讀 9361

1樓:匿名使用者

因為你將y與x的函式關係式變成了關於x的一元二次方程形式。由於每一個函式的定義域都是非空集合,所以x必然存在,因此判別式△≥0

用判別式法求函式的值域時為什麼△一定≧0,為什麼一定有解

2樓:平安兔郭子龍

沒有太明白你說的意思

如果是一元二次函式

平方項的係數大於0的話

值域為最小值到正無窮

平方項係數小於0,則為負無窮到最大值

與判別式的大小是無關的

判別式法求函式值域怎麼求

3樓:關鍵他是我孫子

判別式法求函式值域方法:求判別式b^2-4ac,從而判斷出值域中函式的根的個數。如果b^2-4ac<0無根,b^2-4ac=0有兩個相等根即一個根,b^2-4ac>0有兩個不相等根。

具體解題過程:

把x作為未知量,y看作常量,將原式化成關於x的一元二次方程形式y*,令這個方程有實數解,然後對二次項係數是否為零加以討論:

(1)當二次項係數為0時,將對應的y值代入方程y*中進行檢驗以判斷y的這個取值是否符合x有實數解的要求。

(2)當二次項係數不為0時,∵x∈r,∴δ≥0

此時直接用判別式法是否有可能產生增根,關鍵在於對這個方程去分母這一步是不是同解變形。

4樓:匿名使用者

一、判別式法求值域的理論依據

求函式的值域

象這種分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。

解:由得:

(y-1)x2+(1-y)x+y=0 ①

上式中顯然y≠1,故①式是關於x的一元二次方程

為什麼可以這樣做?即為什麼△≥0,解得y的範圍就是原函式的值域?

我們可以設計以下問題讓學生回答:

當x=1時,y=? (0) 反過來當y=0時,x=?(1)

當x=2時,y=? () 當y=時,x=?(2)

以上y的取值,對應x的值都可以取到,為什麼?

(因為將y=0和y=代入方程①,方程的△≥0)

當y=-1時,x=?

當y=2時,x=?

以上兩個y的值x都求不到,為什麼求不到?

(因為將y的值代入方程①式中△<0,所以無解)

當y在什麼範圍內,可以求出對應的x值?

函式的值域怎樣求?

若將以上問題弄清楚了,也就理解了判別式求值域的理論依據。

二、判別式法求值域的適用範圍

前面已經談到分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。是不是所有這種類函式都可以用判別式法求值域?

求的值域

從表面上看,此題可以用判別式法求值域。

由原函式得:(y-3)x2+2x+(1-y)=0

=4-4(y-3)(1-y)≥0

即(y-2)2≥0 ∴y∈r

但事實上,當y=3時,可解得x=1, 而x=1時,原函式沒意義。問題出在**呢?

我們仔細觀察一下就會發現,此函式的分子分母均含有因式(x-1),因此原函式可以化簡為,用反函式法可求得,又x≠1代入可得y≠2,故可求得原函式的值域為。

因此,當函式為分子、分母的最高次為2次的分式函式,但分子分母有公因式可約分時,此時不能用用判別式法做,應先約分,再用反函式法求其值域。特別值得注意的是約分後的函式的定義域,如上例中化簡後的函式x≠1,故y≠2。

求函式的值域

此函式為分子、分母的最高次為2次的分式函式,且分子分母無公因式,可不可以用判別式法來求值域呢?

由得:3yx2+(2y-1)x+y+5=0

1)當3y=0,即y=0時,可解得x=5,故y可以取到0

2)當3y≠0時,令△=(2y-1)2-4×3y (y+5)≥0

解得:由1)、2)可得原函式的值域為

上面求得的值域對不對呢?顯然y=在所求得的值域範圍內,但當y=時,可求得x=2,故了限定了自變數x的取值範圍的函式不能用判別式法求值域。

此題可用導數法求得原函式在區間[3,5]內單調遞增,故函式的定義域為。

綜上所述,函式必須同時滿足以下幾個條件才可以用判別式法求其值域:

分子分母的最高次為二次的分式函式;

分子分母無公約數;

未限定自變數的取值範圍。

最後需要說明的是用判別式求值域時,第一步將函式變為整式的形式,第二步一定要看變形後的二次項(x2項)係數是否含有y,若含有y,則要分二次項係數為零和不為零兩種情況進行討論。

利用判別式求值域時應注意的問題

用判別式法求函式的值域是求值域的一種重要的方法,但在用判別式法求值域時經常出錯,因此在用判別式求值域時應注意以下幾個問題:

一、要注意判別式存在的前提條件,同時對區間端點是否符合要求要進行檢驗

錯因:把 代入方程(*)顯然無解,因此 不在函式的值域內。事實上, 時,方程(*)的二次項係數為0,顯然不能用「 」來判定其根的存在情況

二、注意函式式變形中自變數的取值範圍的變化

解中函式式化為方程時產生了增根( 與 雖不在定義域內,但是方程的根),因此最後應該去掉 與 時方程中相應的 值。所以正確答案為 ,且 。

三、注意變形後函式值域的變化

四、注意變數代換中新、舊變數取值範圍的一致性

綜上所述,在用判別式法求函式得值域時,由於變形過程中易出現不可逆得步驟,從而改變了函式得定義域或值域。因此,用判別式求函式值域時,變形過程必須等價,必須考慮原函式得定義域,判別式存在的前提,並注意檢驗區間端點是否符合要求。

5樓:徐少

舉例y=(2x+1)/(x²+1)

定義域:r

y(x²+1)=x+1

yx²-x+y-1=0......①

∵ y=(x+1)/(x²+1)的定義域是r∴ 關於x的方程①恆有實數解

∴ δ=(-1)²-4y(y-1)≥0

4y²-4y-1≤0

(4-√32)/8≤y≤(4+√32)/8(1-√2)/2≤y≤(1+√2)/2

∴y=(2x+1)/(x²+1)的值域是

[(1-√2)/2,(1+√2)/2]

6樓:一蓑煙雨

高中數學必修1—判別式法求函式值域

用根的判別式求值域如何利用根的判別式求函式的值域或定義域

y mx 2 6mx m 8 的定義域為r,mx 2 6mx m 8 0。令f x mx 2 6mx m 8。一 當m 0時,f x 8 0。此時x自然可取任意實數。m 0是滿足題意的。二 當m 0時,f x mx 2 6mx m 8是一條開口向下的拋物線,無論m取任何實數,都不 能確保f x 0恆...

求一道函式值域

y 2x 1 1 2x 1 2x 1 2x 1 1 2x 1 1 1 2x 1 1 2x 1 0 所以1 1 2x 1 1 所以值域 1 1,達人大都督啊,你不要說的太簡潔了啊.接著大都督的過程來就是 y 1 1 2x 1 此時,從函式的定義域來說,2x 1 0,故定義域是 1 2 1 2,此時,分...

求有根號的函式的值域,帶根號的函式值域求法

在求這一類函式值域時 一般使用三角函式轉換 或者把整個根號設為t 得到新的函式,再進行求解 當然要注意定義域 帶根號的函式值域求法 例子y 1 x x 3 的求法 函式y 1 x x 3 的定義域是 3,1 在 3,1 上,函式f x 1 x 是減函式,當x 3時,取得最大值2,當x 1時取得最小值...