圓的極座標方程有什麼用處呢圓的極座標方程是什麼?

2021-03-05 09:21:49 字數 5267 閱讀 1121

1樓:冬雲

圓的極座標方程是什麼?

2樓:彭新晨

可以表示距離你多遠p,和你之間的角度θ,就這個用,和平面直角座標系差不多!

3樓:匿名使用者

看書吧,我也學過,不過也不會了

4樓:書布凡邰黎

引數的幾何意義不同.

例如圓x^2+y^2=4x

引數方程的表示:

先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得引數方程:x=2+2cost,y=2sint

其中t表示的是圓上某一點p(x,y)與圓心a(2,0)組成的射線ap與x軸的夾角,所以t

∈[0,2π]

極座標方程的表示:

由圓的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圓的極座標方程ρ=4cosθ

這裡的ρ表示圓上一點p(x,y)到極點,也就是座標原點〇的距離.

角度θ的範圍一般有兩種表示方法,一種是θ表示從極軸逆時針轉向射線〇p的角度的大小,所以θ的範圍[0,2π];另一種是θ是表示射線〇p與極軸,也就是x軸的夾角,並且規定極軸上方的夾角為正,下方為負,所以θ的範圍是[-π,π].

很明顯,對於圓x^2+y^2=4x來說,θ的表示用第二種形式會簡單些,即θ∈[-π/2,π/2]

所以,圓x^2+y^2=4x的

引數方程是x=2+2cost,y=2sint,t∈[0,2π]

極座標方程是ρ=4cosθ,θ∈[-π/2,π/2]

圓的極座標方程是什麼?

5樓:你愛我媽呀

在極座標系中,圓心在(r0, φ)半徑為a的圓的一般方程為:

推導:設圓的半徑為r,圓心的極座標為(p0,α),並變換為直角座標:(p0cosα,p0sinα)。則圓上的點的直角座標系方程為:

設圓上的點的極座標為(α,β),則x=pcosβ,x=psinβ。因此:

化簡為:

6樓:初霞雰湛濡

一般我平時見到的圓的

方程是指在平面直角座標下的圓的方程

除了平面直角座標,還有極座標,相應的圓在極座標也有對應的方程兩者可以互相轉化

轉化公式是:ρ²=x²+y²,x=ρcosθ,y=ρsinθ比如圓(x-1)²+y²=1轉化為極座標

(ρcosθ-1)²+(ρsinθ)²=1即ρ²-2ρcosθ=0

7樓:瞑粼

|^|設

圓心m(ρ',θ') 半徑r 極點o

圓上任意一點p(ρ,θ)

δopm中

由余弦定理

|om|^2+|op|^2-2|om|*|op|*cos(θ-θ')=|pm|^2

(ρ')^2+ρ^2-2ρρ'cos(θ-θ')=r^2

8樓:匿名使用者

圓心在原點時:p=r表示半徑為r的圓.

圓心不在原點時:p^2+m^2-2pmcos(θ-α)=r^2表示以(m,α)為圓心,半徑為r的圓.

9樓:匿名使用者

圓心在極點,半徑為a的圓的極座標方程是r=a

圓的引數方程和圓的極座標方程有什麼區別?請說的詳細點,,老是搞不清楚……順便也說我極座標與引數方陳 10

10樓:

^引數的幾何意義不同.

例如圓x^2+y^2=4x

引數方程的表示:

先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得引數方程:x=2+2cost,y=2sint

其中t表示的是圓上某一點p(x,y)與圓心a(2,0)組成的射線ap與x軸的夾角,所以t

∈[0,2π]

極座標方程的表示:

由圓的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圓的極座標方程ρ=4cosθ

這裡的ρ表示圓上一點p(x,y)到極點,也就是座標原點〇的距離.

角度θ的範圍一般有兩種表示方法,一種是θ表示從極軸逆時針轉向射線〇p的角度的大小,所以θ的範圍[0,2π];另一種是θ是表示射線〇p與極軸,也就是x軸的夾角,並且規定極軸上方的夾角為正,下方為負,所以θ的範圍是[-π,π].

很明顯,對於圓x^2+y^2=4x來說,θ的表示用第二種形式會簡單些,即θ∈[-π/2,π/2]

所以,圓x^2+y^2=4x的

引數方程是x=2+2cost,y=2sint,t∈[0,2π]

極座標方程是ρ=4cosθ,θ∈[-π/2,π/2]

11樓:匿名使用者

引數方程是在直角座標系中選中一個引數 並用該參數列示曲線上的任意點的橫座標和縱座標構成方程組。

極座標是另一種的座標系,它的座標系只有極角和極徑,極座標方程就是用極徑和極角表示曲線上點的方程

12樓:沖天旋風

極座標是角度和徑兩個單位,平面上各點可由點-原點-主軸的夾角和點原點距離兩個量表示;

引數座標是指引數為單位,空間xyz都可以用一個或幾個引數標註,一個原點+數量*引數,一般方程可以看成引數為單位

13樓:機敏的人

在給定的平面直角

座標系中,如果曲線上任意一點的座標(x,y)都是某個變數t的函式x=f(t),y=φ(t)——⑴;且對於t的每一個允許值,由方程組⑴所確定的點m(x,y)都在這條曲線上,那麼方程組⑴稱為這條曲線的引數方程,聯絡x、y之間關係的變數稱為參變數,簡稱引數。類似地,也有曲線的極座標引數方程ρ=f(t),θ=g(t)。⑵

圓的引數方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 為圓心座標,r 為圓半徑,θ 為引數,(x,y) 為經過點的座標

橢圓的引數方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a為長半軸長 b為短半軸長 θ為引數

橢圓雙曲線的引數方程 x=a secθ (正割) y=b tanθ a為實半軸長 b為虛半軸長 θ為引數

拋物線的引數方程 x=2pt^2 y=2pt p表示焦點到準線的距離 t為引數

直線的引數方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直線經過(x',y'),且傾斜角為a,t為引數.

或者x=x'+ut,  y=y'+vt (t∈r)x',y'直線經過定點(x',y'),u,v表示直線的方向向量d=(u,v)

圓的漸開線x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r為基圓的半徑 φ為引數

圓的漸開線

平擺線引數方程 x=r(θ-sinθ) y=r(1-cosθ)r為圓的半徑,θ是圓的半徑所經過的角度(滾動角),當θ由0變到2π時,動點就畫出了擺線的一支,稱為一拱。

2.實際上,極座標與直角座標一樣,都是為了表示點在空間中的位置而引入的參照系。

誰知道圓的極座標方程的公式

14樓:是月流光

圓的極座標公式:ρ²=x²+y²,x=ρcosθ,y=ρsinθ  tanθ=y/x,(x不為0)

1、如果半徑為r的圓的圓心在直角座標的x=r,y=0點,即(r,0),也就是極座標的ρ=r,θ=0,即(r,0)點:那麼該圓的極座標方程為:ρ=2rcosθ。

2、如果圓心在x=r,y=r,或在極座標的(√2 r,π/4),該圓的極座標方程為:ρ^2-2rρ(sinθ+cosθ)+r^2=0。

3、如果圓心在x=0,y=r,該圓的極座標方程為:ρ=2rsinθ。

4、圓心在極座標原點:ρ=r(θ任意)。

拓展內容:

在數學中,極座標系是一個二維座標系統。該座標系統中任意位置可由一個夾角和一段相對原點—極點的距離來表示。

極座標系的應用領域十分廣泛,包括數學、物理、工程、航海、航空以及機器人領域。在兩點間的關係用夾角和距離很容易表示時,極座標系便顯得尤為有用;而在平面直角座標系中,這樣的關係就只能使用三角函式來表示。

對於很多型別的曲線,極座標方程是最簡單的表達形式,甚至對於某些曲線來說,只有極座標方程能夠表示。

15樓:_kxin丶

圓的極座標方程公式為:

ρ²-2aρcosθ-2bρsinθ+a²+b²=r²

a和b分別是此圓的座標,r為半徑,帶入上述方程,即可求出此園的極座標方程。

擴充套件內容:

極座標與直角座標的轉換:

極座標轉直角座標:x=ρcosθ,y=ρsinθ。

直角座標轉極座標:ρ = sqrt(x² + y²),θ= arctan y/x。

在 x = 0的情況下:若 y 為正數 θ = 90° (π/2 radians); 若 y 為負,則 θ = 270° (3π/2 radians)。

極座標方程:

在數學中,極座標系是一個二維座標系統。該座標系統中任意位置可由一個夾角和一段相對原點—極點的距離來表示。極座標系的應用領域十分廣泛,包括數學、物理、工程、航海、航空以及機器人領域。

在兩點間的關係用夾角和距離很容易表示時,極座標系便顯得尤為有用;而在平面直角座標系中,這樣的關係就只能使用三角函式來表示。對於很多型別的曲線,極座標方程是最簡單的表達形式,甚至對於某些曲線來說,只有極座標方程能夠表示。

16樓:冬雲

圓的極座標方程是什麼?

17樓:匿名使用者

一般我平時見到的圓的方程是指在平面直角座標下的圓的方程除了平面直角座標,還有極座標,相應的圓在極座標也有對應的方程兩者可以互相轉化

轉化公式是:ρ²=x²+y²,x=ρcosθ,y=ρsinθ比如圓(x-1)²+y²=1轉化為極座標

(ρcosθ-1)²+(ρsinθ)²=1即ρ²-2ρcosθ=0

18樓:瞑粼

^設圓心m(ρ',θ') 半徑r 極點o

圓上任意一點p(ρ,θ)

δopm中

由余弦定理

|om|^2+|op|^2-2|om|*|op|*cos(θ-θ')=|pm|^2

(ρ')^2+ρ^2-2ρρ'cos(θ-θ')=r^2

19樓:匿名使用者

這個數學書上會有具體的公式的,看看你的高中數學課本。

20樓:文心雕龍呃呃

pcosa=x psina=y x.x+y.y=p.p

21樓:匿名使用者

x=pcosθ, y=psinθ

圓方程化為極座標形式,圓的引數方程怎麼變成極座標方程

圓的參du 數方程為 zhi x a rcost y b rsint 也就是dao x a 2 y b 2 r2 專 x2 y2 2ax 2by a2 b2 r2 0 代入p2 x2 y2,x pcos 屬,y psin 得 p2 2apcos 2bpsin a2 b2 r。圓的引數方程能直接化為極...

高中數學,直線的極座標方程與圓的極座標方程得到的式子是代表什麼?有什麼幾何意義

兩者聯立,解出 和 可以得到直線和圓交點的極座標 直線和圓的極座標方程怎麼求?直線的極座標方程 1 為常數 2 p cos 3 acos bsin c 0圓的極座標方程 1 a a為常數 2 acos 3 asin 直角座標化成極座標。幾何法,找出極半徑,極角與直線傾角或圓的半徑,直徑的幾何關係,寫...

已知圓的一般方程怎麼求圓心座標和半徑如圓x2y

x a 2 y 2 3a 2 根號3 a 2 所以圓心 a,0 半徑根號3 a 明白了吧 圓的一般式的圓心和半徑怎麼求 圓的一般方程是x2 y2 dx ey f 0 d2 e2 4f 0 其中圓心座標是 d 2,e 2 半徑 根號 d2 e2 4f 2。擴充套件資料 圓 一種幾何圖形 在一個平面內,...