1樓:匿名使用者
三元一次方程一條是無法解的,只能通過三元一次方程組,3 條以上方程才能解。這3條方程還要有各元之間的關係才能計算, 然後通過轉化同一元的係數相等算出不同元之間數理關係,再形成二元一次方程組,再次通過轉化同一元的係數相等算出另一元的結果。得到其中一元的結果後,將結果代入回之前的數理關係,求出另外兩元的結果。
2樓:匿名使用者
解方程組的主要思想是消元.即代入消元,加減消元(已經在解二元一次方程組中應該體會到了).
三元以上一次方程組的解法:
1.一般是觀察能不能用整體代入消元快速得到一個未知數的解(競賽的時候經常這樣)
2.如果不好解的,就老老實實配合加減和代入消元法去除一個未知數,再解二元一次方程吧.
在大學裡的高等數學中使用矩陣解多元一次方程組,其實質也是2所指的方法而已,只不過只是提取係數優化而已.如果你還是高中生或初中生,目前沒必要學矩陣這個解法.
3樓:歸園田居
把三元先換成二元。比如 z=nx+my+c 的格式,代入前兩個方程,就變成了二元一次了。這下知道了吧
4樓:束溪兒勇曄
三元一次方程組的解法仍是用代入法或加減法消元,即通過消元將三元一次方程組轉化為二元一次方程組,再轉化為一元一次方程。
如何消元,首先要認真觀察方程組中各方程係數的特點,然後選擇最好的解法。
有些特殊方程組,可用特殊的消元方法,有時一下子可消去兩個未知數,直接求出一個未知數值來。
5樓:空美媛齋癸
解三元一次方程組的基本思想仍是消元,其基本方法是代入法和加減法.
步驟:①利用代入法或加減法,消去一個未知數,得出一個二元一次方程組;
②解這個二元一次方程組,求得兩個未知數的值;
③將這兩個未知數的值代入原方程中較簡單的一個方程,求出第三個未知數的值,把
這三個數寫在一起的就是所求的三元一次方程組的解.
6樓:第五廣英偶未
解三元一次方程組的基本思路是先消元,即化三元為二元,把三元一次方程組轉化為二元一次方程組,再進行求解.這裡的關鍵是消元,解題時若能根據題目的特點,靈活地進行消元,則可準確、快速地解出方程組.
7樓:莘深潮朝
三元一次方程是解不了的,只能是三元一次方程組,一般來說有幾元就要有幾個方程組,通過消元解答!
8樓:姬馳校星緯
大致是這樣:
原有(1),(2),(3)三式.
用(1)(2)消掉z得
(4).
用(1)(3)消掉z得
(5).
(4)(5)是二元一次.
解出x,y後代回(1)求得z.
9樓:申綠柳隗鵑
三元一次方程,如果想解出具體值,那麼必須有不同的三個方程構成方程組來解。然後利用某兩個方程,消去其中一個,變成二元一次方程組,然後再解。例如:
甲乙兵三數和為26,甲比乙大1,甲的兩倍與丙的和比乙大18,求這三個數。
解:設甲為x,乙為y,丙為z。
則:x+y+z=26
①x-y=1
②2x+z-y=18③
將②方程變換成x=1+y
然後將①和③中的x用1+y來代替
所以①就變成了1+y+y+z=26
就是2y+z=25
③就變成了2(1+y)+z-y=18
就是z+y=16
最後用變換後的①-③就成了
y=9然後再將y=9
代入變換後的②,所以x=10
最後將y=9,x=10代進原來的
①就是9+10+z=26
z=7所以x=10
y=9z=7
10樓:黨涵塔翠荷
答:1、形如:ax+by+cz+cc=0的三元一次方程,有無陣列解。(除x、y、z為未知數外,其它為常量)
2、形如:ax+by+cz+cc=0的三元一次方程組,a1*x+b1*y+c1*z+cc1=0...(1)a2*x+b2*y+c2*z+cc2=0...
(2)a3*x+b3*y+c3*z+cc3=0...(3)用消元法解。從(1)(2)中消去z得:
a4*x+b4*y+cc4=0...(4)
從(2)(3)中消去z得:a5*x+b5*y+cc5=0...(5)從(4)(5)中消去y得:x=cc6/a6將x代入(4)或(5)得y
將x、y代入(1)或(2)或(3)得z
從而方程組
x=...
y=...
z=...
三元一次方程組該怎麼解啊!!要詳細步驟 30
11樓:勤奮的橙紅年代
a:2x+2y+z+8=0
b:5x+3y+z+34=0
c:3x-y+z+10=0
第一步:先消除一個未知數x,得出一個yz的二元方程組。(檢視此題目,當然是先消除z最方便,因為三個算式中都只有一個z。下面的星號*表示乘號:
a:15*(2x+2y+z+8)=15*0
30x+30y+15z+120=0
b:6*(5x+3y+z+34)=6*0
30x+18y+6z+204=0
c:10*(3x-y+z+10)=10*0
30x-10y+10z+100=0
a-b: (30x+30y+15z+120)-(30x+18y+6z+204)=0
(30-30)x+(30-18)y+(15-6)z+(120-204)=0
0x+12y+9z-84=0
12y+11z-84=0
a-c: (30x+30y+15z+120)-(30x-10y+10z+100)=0
(30-30)x+(30+10)y+(15-10)z+(120-100)=0
0x+40y+5z-20=0
40y+5z-20=0
得出yz的二元方程組:
c:12y+9z-84=0
d:40y+5z-20=0
第二步:再消除一個未知數,消除z吧。
c:12y+9z-84=0
5*(12y+9z-84)=5*0
60y+45z-420=0
d:40y+5z-20=0
9*(40y+5z-20)=5*0
360y+45z-180=0
c-d:(60y+45z-420)-(360y+45z-1800)=0
(60-360)y+(45-45)z+(-420+180)=0
-300y+0z-600=0
-300y=600
y=-2
第三步: 將y=-2代入c組:
c:12y+9z-84=0
12*(-2)+9z-84=0
-24+9z-84=0
9z-(24+84)=0
9z=108
z=12
第四步: 將(y=-2)及(z=12)代入a組:
a:2x+2y+z+8=0
2x+2*(-2)+(12)+8=0
2x=-16
x=-8
最後得出結果:
x=-8
y=-2
z=12
12樓:匿名使用者
先消除一個,如z:1式減2式和1式減3式,這樣得到2個關於xy的方程,按一般解法就可。
怎樣解三元一次方程組
13樓:angela韓雪倩
一般三元一次方程都有3個未知數x,y,z和3個方程組,先化簡題目,將其中一個未知數消除,先把第1和第2個方程組平衡後相減,就消除了第一個未知數,再化簡後變成新的二元一次方程。
然後把第2和第3個方程組平衡後想減,再消除了一個未知數,得出一個新的二元一次方程,之後再用消元法,將2個二元一次方程平衡後想減,就解出其中一個未知數了。
再將得出那個答案代入其中一個二元一次方程中,就得出另一個未知數數值,再將解出的2個未知數代入其中一個三元一次方程中,解出最後一個未知數了。
例子:①5x-4y+4z=13
②2x+7y-3z=19
③3x+2y-z=18
2*①-5*②:
(10x-8y+8z)-(10x+35y-15z)=26-95
④43y-23z=69
3*②-2*③:
(6x+21y-9z)-(6x+4y-2z)=57-36
⑤17y-7z=21
17*④-43*⑤:
(731y-391z)-(731y-301z)=1173-903
z=-3 這是第一個解
代入⑤中:
17y-7(-3)=21
y=0 這是第二個解
將z=-3和y=0代入①中:
5x-4(0)+4(-3)=13
x=5 這是第三個解
於是x=5,y=0,z=-3
擴充套件資料:
適合一個三元一次方程的每一對未知數的值,叫做這個三元一次方程的一個解。對於任何一個三元一次方程,令其中兩個未知數取任意兩個值,都能求出與它對應的另一個未知數的值。因此,任何一個三元一次方程都有無數多個解,由這些解組成的集合,叫做這個三元一次方程的解集。
例如,三元一次方程:
...解三元一次方程組的基本思想仍是消元,其基本方法是代入消元法和加減消元法。
步驟:①利用代入法或加減法,消去一個未知數,得到一個二元一次方程組;
②解這個二元一次方程組,求得兩個未知數的值;
③將這兩個未知數的值代入原方程中含有三個未知數的一個方程,求出第三個未知數的值,把這三個未知數的值用一個大括號寫在一起就是所求的三元一次方程組的解。
一次方程組,原方程組中的每個方程至少要用一次。
14樓:匿名使用者
答:三元方程如何解,首先確定消元,由三元變二元按你這個題,肯定是消z最省力。
由2×①-② 得:5x+3y=21 ④
②+2×③得:5x+7y=9 ⑤
由 ⑤- ④ 4y=-12
得y=-3
將y=-3代入 ④ 得到
5x-9=21
得x=6。
將x=6、y=-3代入②
得z=2
x=6、y=-3、z=2代入①③檢驗,結果正確所以 x=6
y=-3
z=2希望能幫上你
重點是:首先要選擇容易消除的元進行消元
15樓:我是龍
會解三元一次方程組.通過解三元一次方程組的學習,提高邏輯思維能力.培養抽象概括的數學能力.
重點、難點:
三元一次方程組的解法.解法的技巧.
重點難點分析:
1.三元一次方程的概念
三元一次方程就是含有三個未知數,並且含有未知數的項的次數都是1的整式方程.如x+y-z=1, 2a-3b+c=0等都是三元一次方程.
2.三元一次方程組的概念
一般地,由幾個一次方程組成,並且含有三個未知數的方程組,叫做三元一次方程組.
例如, 等都是三元一次方程組.
三元一次方程組的一般形式是:
3.三元一次方程組的解法
(1)解三元一次方程組的基本思想
解二元一次方程組的基本思想是消元,即把二元一次方程轉化為一元一次方程求解,由此可以聯想解三元一次方程組的基本思想也是消元,一般地,應利用代入法或加減法消去一個未知數,從而變三元為二元,然後解這個二元一次方程組,求出兩個未知數,最後再求出另一個未知數.
(2)怎樣解三元一次方程組?
解三元一次方程組例題
1.解方程組
法一:代入法
分析:仿照前面學過的代入法,將(2)變形後代入(1)、(3)中消元,再求解.
由(2),得 x=y+1. (4)
將(4)分別代入(1)、(3)得
解這個方程組,得
把y=9代入(4),得x=10.
因此,方程組的解是
法二:加減法
(3)-(1),得 x-2y=-8 (4)
由(2),(4)組成方程組
解這個方程組,得
把x=10,y=9代入(1)中,得 z=7.
因此,方程組的解是
法三:技巧法
分析:發現(1)+(2)所得的方程中x與z的係數與方程(3)中x與z的係數分別對應相等,因此可由(1)+(2)-(3)直接得到關於y的一元一次方程,求出y值後再代回,即可得到關於x、y的二元一次方程組
由(1)+(2)-(3),得 y=9.
把y=9代入(2),得 x=10.
把x=10,y=9代入(1),得 z=7.
因此,方程組的解是
注意:(1)解答完本題後,應提醒同學們不要忘記檢驗,但檢驗過程一般不寫出.
(2)從上述問題的一題多解,使我們體會到,靈活運用代入法或加減法消元,將有助於我們迅速準確
求解方程組.
2.解方程組
分析:在這個方程組中,方程(1)只含有兩個未知數x、z,所以只要由(2)(3)消去y,就可以得到只含有x,z的二元一次方程組.
(2)×3+(3),得11x+7z=29, (4)
把方程(1),(4)組成方程組
解這個方程組,得,
把x=-,z=5代入(2)得3(-)+2y+5=8,所以y=
因此,方程組的解是
3.解方程組
分析:用加減法解,應選擇消去係數絕對值的最小公倍數最小的未知數.
(1)+(3),得 5x+5y=25.(4)
(2)+(3)×2,得 5x+7y=31.(5)
由(4)與(5)組成方程組
解這個方程組,得
把x=2,y=3代入(1),得3×2+2×3+z=13,
所以 z=1.
因此,方程組的解是
4.解方程組
分析:題目中的y:x=3:2,即y=
法一:代入法
由(2)得x=y (4)
由(3)得z= (5)
將(4),(5)代入(1),得+y+y=111
所以 y=45.
把y=45分別代入(4)、(5),得x=30,z=36.
因此,方程組的解是
法二:技巧法
分析:y∶x=3∶2,即x∶y=2∶3=10∶15,而y∶z=5∶4=15∶12,故有x∶y∶z=10∶15∶12.因此,可設x=10k,y=15k,z=12k.將它們一起代入(1)中求出k值,從而求出x、y、z的值.
由(2),得x∶y=2∶3,
即x∶y=10∶15.
由(3),得y∶z=5∶4,
即y∶z=15∶12.
所以 x∶y∶z=10∶15∶12.
設x=10k,y=15k,z=12k,代入(1)中得10k+15k+12k=111,
所以 k=3.
故x=30,y=45,z=36.
因此,方程組的解是
5.解方程組
分析:1) 觀察原方程組,我們準備先消去哪一個未知數?
2) 為什麼要先消去z?注意到三個方程中都含有三個未知數,而在方程(3)中z一項的係數是-1,所以未
知數z易消.
3) 怎樣在(1)和(2)中消去z?
4) 解這個關於x、y的方程組,求x和y的值是多少?
5) 怎樣去求z的值?能不能把x=5, y=0代入(3)中去求z?
(1)+(3)×4 得17x+5y=85 … (4)
(3)×3-(2) 得7x-y=35 … (5)
(4)、(5)組成方程組
解得把x=5, y=0代入(3),得15-z=18,
所以z=-3, 所以
總結:解三元一次方程組的一般步驟:
1.利用代入法或加減法,把方程組中的某一個未知數消去,得到關於另外兩個未知數的二元一次方程
組;2.解這個二元一次方程組,求出這兩個未知數的值;
3.將求得的兩個未知數的值代入原方程組中的一個係數比較簡單的方程,得到一個一元一次方程;
4.解這個一元一次方程,求出最後一個未知數的值;
5.將求得的三個未知數的值用「{」合寫在一起,即可.
練習:1.解方程組
2.解方程組
3.已知方程組 的解使代數式x-2y+3z的值等於-10,求a的值.
練習答案
1. 分析:根據各方程中係數的特點,將方程(1)分別與方程(2)、方程(3)組成兩組,利用加減法消去y比較簡便.
(1)+(2), 有 5x-z=14 (4)
(1)+(3), 有 4x+3z=15 (5)
再解由(4)、(5)構成的二元一次方程組
(4)×3, 得15x-3z=42 (6)
(5)+(6),得19x=57, x=3.
把x=3代入(4),得z=1.
∴把x=3, z=1代入(3),得y=8.
因此,方程組的解是
注意:解三元一次方程組,要先根據各方程的特點,靈活地確定消元步驟和消元方法,不要盲目消元.
2.法-:代入法
由(1),得3y=2x, (4)
由(2)得 5z=y, (5)
把(4)和(5)代入(3),得,
解得y=10.
把y=10分別代入(4)和(5),得
因此,方程組的解是
法二:技巧法
由(1),得x∶y=15∶10(根據分數的基本性質),
由(2),得y∶z=10∶2.
∴ x∶y∶z=15∶10∶2.
設x=15k, y=10k, z=2k 並代入(3),
得15k+10k-2×2k=21,解得 k=1.
∴ x=15, y=10, z=2.
∴ 小結:此方程組是三元一次方程組,這類方程組一般有兩種基本解法,一是將比例式化為等積式,把(1)變為,(2)變為,然後代入(3),可消去兩個未知數x和z,得到關於y的一元一次方程;二是把方程(1)和(2)的兩個比統一為x∶y∶z=15∶10∶2然後設每一份為k,即x=15k, y=10k, z=2k,代入方程(3)可求出k,進而求得x, y, z的值.
3.分析:由題意可知,此方程組中的a是已知數,x、y、z是未知數,先解方程組,求出x、y、z(含有a的代數式),然後把求得的x、y、z代入等式x-2y+3z=-10,可得關於a的一元一次方程.解這個方程,即可求得a的值.
法-:(2)-(1),得z-x=2a (4)
(3)+(4),得2z=6a, z=3a.
把z=3a分別代入(2)和(3),得y=2a, x=a.
∴把x=a, y=2a, z=3a代入x-2y+3z=-10,
得a-2×2a+3×3a=-10, 解得.
法二:技巧解法
(1)+(2)+(3),得2(x+y+z)=12a,
即x+y+z=6a (4)
(4)-(1),得z=3a;
(4)-(2),得x=a;
(4)-(3),得y=2a.
∴以下同解法-,略.
注意:當方程組中三個方程的未知數的係數都相同時,可以運用此題解法二中的技巧解這類三元一次方程組.
三元一次方程組,怎樣解三元一次方程組
解決這一類問題非常簡單,其關鍵在於消元,也就是消去未知數。可以通過代換或者是相加減消去。例如第二題 有些題目好像沒有寫清楚,比如第一題x 3y 2y 13不知道是不是哦 我們用代換法算 x 2 y 3 z 4 等式兩邊同時乘以最小公倍數12,等式變形為 6x 4y 3z 然後我們就可以得出 x 2y...
一道三元一次方程,解一道三元一次方程組
去分母x y z 3.3 20x 15y 12z 51 12x 15y 20z 53.4 增廣矩陣 1 1 1 3.3 20 15 12 51 12 15 20 53.4 作行初等變換 是主元 1 1 1 3.3 主行不變0 5 8 15 這行 第1行 200 3 8 13.8 這行 第1行 12 ...
求解釋一元一次方程,二元一次方程,三元一次方程是什麼意思
元指的是未知數,比如x 次數指的是乘以它本身幾次,比如平方就是x乘以x,即x 2一元一次,就是一個未知數,且未知數指數是一比如,x 1 5 二元一次方程,就是兩個未知數,未知數指數是一,比如,x y 5 三元一次,比如,x y z 10等 元 代表未知數,次 代表未知數最高次數。一元一次方程 含有1...