積分和不定積分的區別什麼叫積分,什麼叫微積分,什麼叫定積分,什麼叫不定積分,有什麼聯絡和區別

2021-03-09 08:35:51 字數 5456 閱讀 1360

1樓:百度文庫精選

內容來自使用者:落luotong

不定積分目的要求1.理解原函式的定義,知道原函式的性質,會求簡單函式的原函式。2.理解不定積分的概念,掌握不定積分的線性性質,會用定義求簡單函式的不定積分。內容分析1.不定積分是一元函式微積分學的基本內容,本章教材是在學生已掌握求導數方法的基礎上,研究求原函式或不定積分的。

故學好「導數與微分」是學好不定積分的前提,教學時,要與「導數與微分」一章的有關內容進行對照。2.本節教學重點是原函式和不定積分的概念教學,難點是原函式的求法,突破難點的關鍵是緊緊扣住原函式的定義,逆用求導公式,實現認知結構的理順,由於逆運算概念學生並不陌生,因此教學中要充分利用思維定勢的積極因素並引入教學。另外,本節切勿提高教學難度,因為隨著後續學習的深入,積分方法多,無需直接用定義求不定積分。

3.本節教學要始終抓住一條主線:「求導數與求原函式或不定積分(在不計所加任意常數時)互為逆運算」。強調求不定積分時,不要漏寫任意常數c;另外,要向學生說明:

求一個函式的不定積分,允許結果在形式上不同,但結果的導數應相等。指出這點是有益的,一方面使學生會檢查得到的不定積分是否正確,另一方面消除學生由於所得不定積分形式的不同而產生的疑問。

2樓:育龍單招網

不定積分計算的

是原函式(得出的結果是一個式子;)

定積分專計算的屬是具體的數值(得出的借給是一個具體的數字)。

二者之間關係:

定積分與積分看起來風馬牛不相及,但是由於一個數學上重要的理論的支撐,使得它們有了本質的密切關係.把一個圖形無限細分再累加,這似乎是不可能的事情,但是由於這個理論,可以轉化為計算積分.這個重要理論就是大名鼎鼎的牛頓-萊布尼茲公式,它的內容是:

若f'(x)=f(x),

那麼∫ _a^b(f(x) dx ) = f(a)-f(b)。

3樓:煥通

積分是有上下限的,而不定積分沒有上下限。

什麼叫積分,什麼叫微積分,什麼叫定積分,什麼叫不定積分,有什麼聯絡和區別

4樓:冰極曉月

首先,微積分包括微分和積分,積分包括不定積分和定積分。

一、微分:

如果函式在某點處的增量可以表示成

△y=a△x+o(△x) (o(△x)是△x的高階無窮小)

且a是一個與△x無關的常數的話,那麼這個a△x就叫做函式在這點處的微分,用dy表示,即dy=a△x

△y=a△x+o(△x),兩邊同除△x有

△y/△x=a+o(△x)/△x,再取△x趨於0的極限有

lim△y/△x=lim[a+o(△x)/△x]=lima+lim[o(△x)/△x]=a+0

f'(x)=lim△y/△x=a

所以這裡就揭示出了,導數與微分之間的關係了,

某點處的微分:dy=f'(x)△x

通常我們又把△x叫自變數的微分,用dx表示 所以就有

dy=f'(x)dx.證明出了微分與導數的關係

正因為f'(x)=dy/dx,所以導數也叫做微商(兩個微分的商)

二、積分

求積分的過程,與求導的過程正好是逆過程,好加與減,乘與除的關係差不多。

1、不定積分:求一個函式f(x)的不定積分,就是要求出一個原函式f(x),使得f'(x)=f(x),

而f(x)+c(c為任意常數)就是不定積分∫f'(x)dx的所有原函式,

不定積分其實就是這個表示式:∫f'(x)dx

2、定積分:定積分與不定積分的區別是,定積分有上下限,∫(a,b)f'(x)dx

而不定積分是沒有上下限的,因而不定積分的結果往往是個函式,定積分的結果則是個常數,這點對解積分方程有一定的幫助。

三、聯絡和區別

微積分包括微分和積分,積分包括不定積分和定積分。

其中,不定積分沒有積分上下限,所得原函式後面加一個常數c;定積分是在不定積分的基礎上,加上了積分上下限,所得的是數。

dy/dx 叫導數,將dx乘到等式右邊,就是微分。

5樓:匿名使用者

積分是累加的一種形式,可以簡單看成是無限項無限小的和。

微積分是兩個東西的統稱,微分和積分,二者互為逆運算。

剛才說積分是一種特殊的累加運算,不定積分就是已知一個函式的導數,要求的原函式,因為這樣的原函式有無限多個(相差一個常數),所以叫不定。

那什麼叫做定積分呢?積分不是一種累加嗎,那定積分指定這種累加要從**開始,要到**結束,算出這個和。可以證明這個和是就是原函式在上下限的函式值的差(牛頓萊布尼茨定理),而這個原函式雖然有無限多個,但因為只是相差一個常數,所以這個差值是不變的,所以叫做定積分。

6樓:巴塞爾資本協議

如果你沒系統學過的話,你把以上的都叫積分。用到積分的也含有微分的知識,因此也會把積分說成微積分。至於定積分,不定積分是指積分有沒有指定積分上下限,有即定積分。

還有無窮積分是指上/下限是無窮大或無窮小。

定積分和不定積分有何區別?

7樓:

定積分確切的說是一個數,或者說是關於積分上下限的二元函式,也可以成為二元運算,可以這樣理解∫[a,b]f(x)dx=a*b,其中*即為積分運算(可以類比簡單的加減運算,只不過這時定義的法則不一樣,加減運算是把二維空間的點對映到一維空間上一個確定的點,定積分也一樣,只不過二者的法則不一樣);

不定積分也可以看成是一種運算,但最後的結果不是一個數,而是一類函式的集合.

對於可積函式(原函式是初等函式)存在一個非常美妙的公式∫[a,b]f(x)dx=f(b)-f(a)其中f'(x)=f(x)或∫f(x)dx=f(x)+c最後附上一句,積分這一章難度較大,要學好這一章首先要把微分運算弄得很清楚,同時常用的公式也要記.而且有些定積分是不能通過牛頓-萊布尼茨公式計算的,如∫[0,∞]sinx/xdx=π/2(用留數算的),∫[0,∞]e^(-x^2)dx=√2/2(用二重積分極座標代換算的),以上兩種積分的原函式都不能用初等函式表示,因此也就不能用牛頓-萊布尼茨公式計算,當你不知道這些的時候可能花一年的功夫也沒有絲毫進展.我當年就是深有感觸的,我是在高一入學前的暑假自學的微積分,高一的時候遇到一個定積分∫[0,π/2]dx/√(sinx),開始不知道這是一個超越積分,所以高一只要有空餘時間我就會計算這個定積分,直到高二學完伽馬函式後才計算出其值為(γ(1/4))^2/(2√(2π)),並由此得出不定積分∫dx/√(sinx)也是超越積分.

常見的超越積分還有很多,尤其像那種三角函式帶根號的,多半都是超越的,自學時要注意

8樓:佟佳金生力庚

定積分是指有上下限的積分,先按照不定積分的方法把原函式求出來,然後代入上下限求出定積分。

不定積分就只有求出原函式。

再者不定積分是一個含有常數c的某一個原函式,它代表的是一類這樣的函式。而定積分就是一個數,一個可以明確表達出來的數。

希望對你有幫助~~望採納哦~~

9樓:系韶美蒿玥

不定積分計算的是原函式(得出的結果是一個式子)

定積分計算的是具體的數值(得出的借給是一個具體的數字)

不定積分是微分的逆運算

而定積分是建立在不定積分的基礎上把值代進去相減

在微積分中

積分是微分的逆運算,即知道了函式的導函式,反求原函式。在應用上,積分作用不僅如此,它被大量應用於求和,通俗的說是求曲邊三角形的面積,這巧妙的求解方法是積分特殊的性質決定的。

一個函式的不定積分(亦稱原函式)指另一族函式,這一族函式的導函式恰為前一函式。

其中:[f(x)

+c]'

=f(x)

一個實變函式在區間[a,b]上的定積分,是一個實數。它等於該函式的一個原函式在b的值減去在a的值。

定積分我們知道,用一般方法,y=x^2不能求面積(以x軸,y=x^2,x=0,x=1為界)

定積分就是解決這一問題的.

那摸,怎摸解呢?

用定義法和

微積分基本定理(牛頓-萊布尼茲公式)

具體的,導數的幾條求法都知道吧.

微積分基本定理求定積分

導數的幾條求法在這裡

進行逆運算

例:求f(x)=x^2在0~1上的定積分

∫(上面1,下面0)f(x)dx=f(x)|(上面1,下面0)=(三分之一倍的x的三次方)|(上面1,下面0)≈0.3333×1-0.3333×0=0.3333(三分之一)

完了應該比較簡單

不定積分

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c.

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式的不定積分的過程叫做對這個函式進行積分.

由定義可知:

求函式f(x)的不定積分,就是要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c,就得到函式f(x)的不定積分.

總體來說定積分和不定積分的計算物件是不同的

所以他們才有那麼大的區別

10樓:謬寒雲虢憐

不定積分相當於求導的逆運算,結果是一族函式;

而定積分的最終結果是一個數字,這是它與不定積分的本質區別。

通常可以通過求不定積分,然後代入上下限來計算定積分,也就是n-l公式,但是這個方法並不是計算定積分的唯一方法,原因就是因為定積分最後只是一個數字,我們不求原函式的話,有時也是可以把這個數字算出來的。因此求原函式並不是計算定積分的必要過程,只不過是高數中我們常用的過程。

11樓:託姆世界

講這麼多都沒有把理講明白。

其實很簡單的理。

不定積分是軌跡。

定積分就是限定兩個軌跡後中間形成的空間。

二維形成的面積,三維形成的是空間,三維以上人類的知識還沒達到。

12樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

13樓:晉漠練以鬆

不同:不定積分

定積分定義:

原函式族

分割、近似求和、取極限

「輸入」:

函式f函式f

及積分上下限a,b

「輸出」結果

原函式族

實數(定積分值)

(包含積分常數)

相通:1

變上限積分函式(即定積分值隨上限變化產生的函式)即為一個原函式(加上積分常數後即為不定積分)

有些函式(如e^(-x^2))的原函式不是初等函式,也就是說不定積分寫不出來。但是其定積分可以通過某些手段求得或近似求得,此時可以近似得用定積分的結果來計算原函式的某些性質,如增減性、極值、影象等等。

2(牛頓-萊布尼茨公式):

定積分的值可以表示為函式的任意一個原函式(可以通過不定積分來求解)在積分上下限的函式值之差。

由於這個公式的存在,我們一般是通過計算不定積分的結果來計算定積分的。

3兩種積分的存在性是相同的。由於不定積分的存在性較難討論,我們一般是通過被積函式在任意區間上的定積分是否存在來討論函式是否「可積」的。

什麼叫不定積分什麼叫積分,什麼叫微積分,什麼叫定積分,什麼叫不定積分,有什麼聯絡和區別

f x dx f x c,我們把函式f x 的所有原函式f x c 其中,c為任意常數 叫做函式f x 的不定積分,又叫做函式f x 的反導數。記作 f x dx或者 f 高等微積分中常省去dx 即 f x dx f x c。其中 叫做積分號,f x 叫做被積函式,x叫做積分變數,f x dx叫做被...

求助不定積分,求助不定積分

思路 復1 作代換 u sqrt 1 x 2 加部分制分式bai 原積分 integral of 1 u du2 2 du 1 2sqrt2 ln zhiu sqrt2 ln u sqrt2 c 代入dao u sqrt 1 x 2 可得最終結果 2 長除法加部分分式 integrant x 2 5...

原函式與不定積分的聯絡和區別,不定積分,定積分,原函式之間有什麼關係 區別。謝謝各位前輩從理論上說明。

在區間i上,函式f x 的帶有任一常數項的原函式稱為f x 或f x dx 在區間i上的不定積分。如果f x 是f x 在區間i上的一個原函式,那麼f x c就是f x 的不定積分。不定積分可以表示f x 的任一一個原函式。不定積分,定積分,原函式之間有什麼關係 區別。謝謝各位前輩從理論上說明。一 ...