底數不同指數相同比大小和底數相同指數不同比大小的方法是什麼

2021-03-27 08:24:42 字數 5346 閱讀 2459

1樓:友緣花哥

我的方法麻煩,相除之法簡單!

指數函式y=a^x(a≠1),當0<a<丨時,y是減函式;a>1時,y是增函式.

0<1/3<1,y是減函式,y隨x的增大而減小.

1/3<1/2,所以(1/3)^1/3>(1/3)^1/2

第二個,兩邊同時取以1/2為底的對數,即log(1/2)x,這也是個減函式.log(1/2)x隨x的增加的而減小.

log(1/2)(1/3^1/2)=(1/2)log(1/2)(1/3),因為log

(1/2)(1/3)<0,所以log(1/2)(1/3)^(1/2)<0;

log(1/2)(1/2)^(1/2)=1/2>0,所以(1/3)^(1/2)<(1/2)^(1/2)

2樓:匿名使用者

可以兩個數數直接相除,

比如第一個結果為1/3的-1/6次方,大於1,前一個大。

第二組結果為2/3的1/2次方,小於1,後一個大

底數不同指數相同的指數函式比大小,怎麼比?出幾個例子講講,謝謝!

3樓:殘風月神

畫圖 從圖上看 最簡單 底數越大 就越傾斜一般來講 底數大的 在指數大於0的情況下 更大但如果在指數小於0 就是小的

你可以自己畫圖 稍微分析一下 就會明白了

2為底數 當指數為1 這個函式等於2

當1.5為底數 指數為1 函式等於1.5

同指數不同底數的指數函式如何比較大小?

4樓:匿名使用者

一、若底數

相同,指數不同,用指數函式的單調性來做;

二、若指數相同,底數不同,畫出兩個函式的影象,比如判斷0.7^(0.8)與0.6^(0.8).

先畫出f(x)=0.7^x,g(x)=0.6^x的影象,觀察當x=0.8的函式影象的高低,來判斷函式值大小即可;

其實這個確實可以用冪函式(估計過幾個星期就學到了)來做,來判斷單調性(這個有時候有可能 要涉及到導數問題,高三選修內容)

三、指數不同,底數也不同,找中間量,通常為1.但不排除其他的,比如判讀0.7^(0.

8),0.8^0.7,與1判斷,結果兩者都比1小,所以選另外的中間量0.

7^0.7來做的.

冪函式底數不同 指數相同怎麼比大小

5樓:匿名使用者

底數大於 1 時,指數大的大,底數是小於1時,指數大的小。而底數為負數時相反與上面相反。

指數不同,底數也不同,找中間量,通常為1。但不排除其他情況,比如判讀0.7^(0.

8),0.8^0.7,與1判斷,結果兩者都比1小,因此選另外的中間量0.

7^0.7進行比較。

擴充套件資料

正值性質

當α>0時,冪函式y=xα有下列性質:

a、影象都經過點(1,1)(0,0);

b、函式的影象在區間[0,+∞)上是增函式;

c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0(函式值遞增)。

冪函式是基本初等函式之一。初等函式是由基本初等函式經過有限次的四則運算和複合運算所得到的函式。基本初等函式和初等函式在其定義區間內均為連續函式。

不是初等函式的函式,稱為非初等函式,如狄利克雷函式和黎曼函式。目前有兩種分類方法:數學分析有六種基本初等函式,高等數學只有五種。

6樓:

冪函式底數不同指數相同?不就是冪函式增減問題嗎?(y=xⁿ)

一、定義域和值域

冪函式的一般形式是y=xⁿ,其中,n可為任何實數,但中學階段僅研究n為有理數的情形,這時可表示為y=x^(m/k),其中m∈z,k∈n*,且m,k互質。特別,當k=1時為整數指數冪。

(1)當m,k都為正奇數時,如y=x,y=x³,y=x^(3/5)等,定義域、值域均為r,為奇函式;

(2)當m為負奇數,k為正奇數時,如y=x^(-1)=1/x,y=x^(-3)=1/x³,y=x^(-3/5)等,定義域、值域均為,也就是(-∞,0)∪(0,+∞),為奇函式;

(3)當m為正奇數,k為正偶數時,如y=x^(1/2),y=x^(3/4)等,定義域、值域均為[0,+∞),為非奇非偶函式;

(4)當m為負奇數,k為正偶數時,如y=x^(-1/2),y=x^(-3/4)等,定義域、值域均為(0,+∞),為非奇非偶函式;

(5)當m為正偶數,k為正奇數時,如y=x²,y=x^(2/3)等,定義域為r、值域為[0,+∞),為偶函式;

(6)當m為負偶數,k為正奇數時,如y=x^(-2)=1/x²,y=x^(-2/3)等,定義域為,也就是(-∞,0)∪(0,+∞),值域為(0,+∞),為偶函式。

二、特殊情況

由於x大於0是對α的任意取值都有意義的,因此下面給出冪函式在各象限的各自情況。可以看到:

(1)所有的影象都通過(1,1)這點.(α≠0) α>0時 圖象過點(

特殊性(2):冪函式的單調區間

0,0)和(1,1)。

(2)單調區間:

當α為整數時,α的正負性和奇偶性決定了函式的單調性:

①當α為正奇數時,影象在定義域為r內單調遞增;

②當α為正偶數時,影象在定義域為第二象限內單調遞減,在第一象限內單調遞增;

③當α為負奇數時,影象在第一三象限各象限內單調遞減(但不能

冪函式的單調區間(當a為分數時)

說在定義域r內單調遞減);

④當α為負偶數時,影象在第二象限上單調遞增,在第一象限內單調遞減。

當α為分數時,α的正負性和分母的奇偶性決定了函式的單調性:

①當α>0,分母為偶數時,函式在第一象限內單調遞增;

②當α>0,分母為奇數時,函式在第

一、三象限各象限內單調遞增;

③當α<0,分母為偶數時,函式在第一象限內單調遞減;

④當α<0,分母為奇數時,函式在第

一、三象限各象限內單調遞減(但不能說在定義域r內單調遞減);

(3)當α>1時,冪函式圖形下凹(豎拋);

當0<α<1時,冪函式圖形上凸(橫拋)。

當α<0時,影象為雙曲線。

(4)在(0,1)上,冪函式中α越大,函式影象越靠近x軸;在(1,﹢∞)上冪函式中α越大,函式影象越遠離x軸。

(5)當α<0時,α越小,圖形傾斜程度越大。

(6)顯然冪函式無界限。

(7)α=2n(n為整數),該函式為偶函式 。

三、可以參考冪函式影象更好的理解。

7樓:

如果它的底數大於0且小於1的話,底數小的比較大.如果底數大於1,那麼底數大的大.因為大於0小於1的底數,越乘越小,大於1的底數,越乘越大.

底數不同指數相同如何比較大小多少

8樓:匿名使用者

指數是偶數時,比較底數的決對值,決對值大的就大指數是奇數時,直接比較底數大小就可以啦

如有疑問請追問,滿意請採納!

怎樣比較計算底數相同,指數不同的數的大小

9樓:好名被佔了

比較大小:

首先判來斷底數的大小自,記底數為a

若:①0<a<1

則比較指數大小,指數大的小,指數小的大

【例】(1/2)²和(1/2)³

∵指數2>3

∴(1/2)²>(1/2)³

②a>1

還是比較指數大小,指數大的大,指數小的小

【例】2²和2³

∵指數2<3

∴2²<2³

計算:同底數冪相乘,底數不便,指數相加

【例】①2²×2³==2^(2+3)==2^5==32

10樓:yj海毛蟲

指數是偶數時,比較底數的絕對值,絕對值大的就大

指數是奇數時,直接比較底數大小就可以啦

指數函式中同指數不同底數的怎麼比較大小

11樓:匿名使用者

一、若底數相同,指數不同,用指數函式的單調性來做;

二、若指數相同,底數不同,畫出兩個函式的影象,比如判斷0.7^(0.8)與0.6^(0.8).

先畫出f(x)=0.7^x,g(x)=0.6^x的影象,觀察當x=0.8的函式影象的高低,來判斷函式值大小即可;

其實這個確實可以用冪函式(估計過幾個星期就學到了)來做,來判斷單調性(這個有時候有可能 要涉及到導數問題,高三選修內容)

三、指數不同,底數也不同,找中間量,通常為1.但不排除其他的,比如判讀0.7^(0.

8),0.8^0.7,與1判斷,結果兩者都比1小,所以選另外的中間量0.

7^0.7來做的.

12樓:探索瀚海

指數相同底數不同的指數函式,底數越大函式值越大。

指數函式是數學中重要的函式。應用到值e上的這個函式寫為exp(x)。還可以等價的寫為e,這裡的e是數學常數,就是自然對數的底數,近似等於 2.718281828,還稱為尤拉數。

指數函式是數學中重要的函式。應用到值e上的這個函式寫為exp(x)。還可以等價的寫為e,這裡的e是數學常數,就是自然對數的底數,近似等於 2.

718281828,還稱為尤拉數。a一定大於零,指數函式當a>1時,指數函式對於x的負數值非常平坦,對於x的正數值迅速攀升,在 x等於 0 的時候y等於 1。當00且≠1) (x∈r),從上面我們關於冪函式的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得a>0且a≠1

在函式y=a^x中可以看到:

(1) 指數函式的定義域為所有實數的集合,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮,同時a等於0函式無意義一般也不考慮。

(2) 指數函式的值域為大於0的實數集合。

(3) 函式圖形都是下凸的。

(4) a>1時,則指數函式單調遞增;若0

(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過指數函式程中(不等於0),函式的曲線從分別接近於y軸與x軸的正半軸的單調遞減函式的位置,趨向分別接近於y軸的正半軸與x軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6) 函式總是在某一個方向上無限趨向於x軸,並且永不相交。

(7) 函式總是通過(0,1)這點,(若y=a^x+b,則函式定過點(0,1+b)

(8) 指數函式無界。

(9) 指數函式既不是奇函式也不是偶函式。

(10)當兩個指數函式中的a互為倒數時,兩個函式關於y軸對稱,但這兩個函式都不具有奇偶性。

(11)當指數函式中的自變數與因變數一一對映時,指數函式具有反函式。

13樓:匿名使用者

愛剪輯-25指數函式的大小比較

比較不同指數不同底數對數函式的大小

11 10 9 因為 log 10 11 肯定大於1.而 其他兩個小於1.同以11為底 log10 肯定大於9 同指數不同底數的指數函式如何比較大小?一 若底數 相同,指數不同,用指數函式的單調性來做 二 若指數相同,底數不同,畫出兩個函式的影象,比如判斷0.7 0.8 與0.6 0.8 先畫出f ...

底數相同,指數不同的加減乘除法有什麼公式嗎

底數相同,指數不同的加減法沒有公式,乘除法就是底數不變,指數相加減。指數運算,是一種關於冪的數 算。同底數冪相乘,底數不變,指數相加 同底數冪相除,底數不變,指數相減。計算公式為 同底數冪相乘,底數相乘,指數相加。同底數冪相除,底數相除,指數相減。冪的乘方,底數不變,指數相乘。積的乘方,先把積的每一...

同指數不同底數冪的乘法怎麼算規律比

同指數不同底數冪的乘法是 逆用冪的運演算法則 積的乘方等於乘方的積,ab n a n b n 比如 3 2x4 2 3x4 2 12 2 144。底數相同,指數不同的加減乘除法有什麼公式嗎 底數相同,指數不同的加減法沒有公式,乘除法就是底數不變,指數相加減。指數運算,是一種關於冪的數 算。同底數冪相...