1樓:海
解答:(i)證明bai:∵當dun≥2時,滿足an-an-1+2an?an-1=0.∴1a
n?1an?1
=2,∴數zhi列dao是等差數列,首項為1a=1,公差d=2.∴1a
n=1+2(n?1)=2n-1.
(版ii)解:bn=a
n2n+1
=1(2n?1)(2n+1)=12
(12n?1
?12n+1
),∴數列的前n項和為tn=1
2[(1?1
3)+(13?1
5)+…+(1
2n?1
?12n+1
)]=1
2(1?1
2n+1)=n
2n+1
.∴2tn(2n+1)≤m(n2+3)化為2n≤m(n2+3),化為m≥2nn+3
.令f(n)=2nn+3
=2n+3n,
函式g(x)=x+3
x(x>0),g′(x)=1?3x=x
?3x,令g′(x)>0,解得x>
3,此時函式g(x)單調遞增;令g′(x)<0,解得0<x<3,此時函式g(x)單調遞減.
∴當x=
3時,函式g(x)取得最小值.
∴當n=1,2時,f(n)單調遞增;當n≥2時,f(n)單調遞減.∴當n=2時,f(n)取得最大值,∴權
m≥47.
在數列{an}中,a1=1,當n≥2時,其前n項和sn滿足sn(sn-an)+2an=0(ⅰ)證明數列{1sn}是等差數列;(ⅱ
2樓:愛刷
解答:證明:(i)∵當n≥2時,an=sn-sn-1,且sn(sn-an)+2an=0
∴sn[sn-(sn-sn-1)]+2(sn-sn-1)=0即sn?sn-1+2(sn-sn-1)=0即1sn-1
sn?1=12
又∵s1=a1=1,故數列是以1為首項,以12為公差的等差數列
(ii)由(i)得:1sn
=n+1
2∴sn=2
n+1當n≥2時,an=sn-sn-1=?2n(n+1)
∵n=1時,?2
n(n+1)
無意義故an=
1,n=1
?2n(n+1)
,n≥2
(iii)∵bn=s
nn=2n(n+1)
=2(1n-1
n+1)
∴tn=2(1-12+1
2-13+…+1n-1
n+1)=2(1-1
n+1)=2nn+1
已知數列{an}中,a1=1,當n≥2時,其前n項和sn滿足sn2-ansn+2an=0.(1)求an.(2)若bn=2n-1,記{1bnsn
3樓:秋梵樂戎
(1)由s1=a1=1,sn
2-ansn+2an=0知,
(1+a2)2-a2(1+a2)+2a2=0,解得,a2=-1
3,s2=23,
∵sn2-ansn+2an=0,
∴sn2-(sn-sn-1)sn+2(sn-sn-1)=0,∴sn-1sn+2sn-2sn-1=0,∴1sn?1
sn?1=12
,則數列是以1為首項,1
2為公差的等差數列,則1s
n=1+1
2(n-1)=n+12,
則sn=2
n+1,
則當n≥2時,an=sn-sn-1=2
n+1-2
n=-2
n(n+1)
;則an=
1,n=1
?2n(n+1)
,n≥2
.(2)由題意,
tn=1
1?1×1+1
2?1×32+1
3?1×2+…+1
n?1×n+12①;
2tn=2×1+1
1?1×32+1
2?1×2+…+1
n?2×n+12②;
②-①得,
tn=2+12(1
1?1+1
2?1+1
3?1+…+1
n?2)-1
n?1×n+1
2=2+1
2×1?1
n?11?1
2-n+1
n=3-n+3
n<3.
在數列{an}中,a1=1,當n≥2時,其前n項和sn滿足:2sn2=an(2sn-1).(ⅰ)求證:數列{1sn}是等差數列,
4樓:雲之墊付
(sn)²=[sn-s(n-1)](sn-1/2)(sn)²=(sn)²-sn/2-sns(n-1)+s(n-1)/2sn+2sns(n-1)-s(n-1)=0s(n-1)-sn=2sns(n-1)
兩邊除以sns(n-1)
1/sn-1/s(n-1)=2
1/sn等差,d=2
s1=a1=1
1/sn=1/s1+2(n-1)=2n-1sn=1/(2n-1)
bn=1//[(2n-1)(2n+1)]
=1/2*2[(2n-1)(2n+1)]
=1/2*[(2n+1)-(2n+1)]/[(2n-1)(2n+1)]
=1/2*
=1/2*[1/[(2n-1)-1/(2n+1)]所以tn=1/2*(1-1/3+1/3-1/5+1/5-1/7+……+1/[(2n-1)-1/(2n+1)]
=1/2*(1-1/(2n+1)]
=n/(2n+1)
5樓:狼軍
解答:(ⅰ)證明:當n≥2時,其前n項和sn滿足:2sn2=an(2sn-1).
∴2s2
n=(sn?s
n?1)(2s
n?1),
化為1sn?1
sn?1
=2,∴數列是等差數列,∴1s
n=1+2(n?1)=2n-1,
∴sn=1
2n?1
.(ii)bn=s
n2n+1
=1(2n?1)(2n+1)=12
(12n?1
?12n+1
),∴數列的前n項和為tn=1
2[(1?1
3)+(13?1
5)+…+(1
2n?1
?12n+1
)]=1
2(1?1
2n+1
)=n2n+1
.∴2tn(2n+1)≤m(n2+3)化為m≥2nn+3,∵2nn+3
=2n+3n<2
2+32=47
.∴m≥47.
使得2tn(2n+1)≤m(n2+3)對所有n∈n*都成立的實數m的取值範圍是[4
7,+∞).
在數列an中,a1 1,且對於任意正整數n,都有an
a n 1 an n 2 n,a1 1,an n 1 n 1 a n 1 n 1 n n 1 n 2 a n 2 n 1 n n 1 4 3 n 1 n 2 2 1 a1 n n 1 2 用累乘法。an an a n 1 a n 1 a n 2 a2 a1 a1 n 1 n 1 n n 2 4 2 ...
在數列an中,a11,an2Sn2Sn1n
利用an sn ssn s 2sn 2sn 1 sn s 2sn 1 2sn 2sn sn 2sns s 2sn sn 2sns s 0 兩端源同時 bai除以 sns1 sn 1 s 2 所以1 sn 是公差dud 2的等差 zhi數列 1 sn 1 s1 n 1 d 1 sn 1 a1 2 n ...
已知數列an中a11前n項和snn2an
s2 4a2 3 a2 a1 a2 3a1 3 s3 5a3 3 a3 s2 a3 3s2 2 6 an sn s n 1 n 2 an 3 n 1 a n 1 3 n 1 an 3 n 1 a n 1 3an n 1 n 1 a n 1 an n 1 n 2 如果認為講解不夠清楚,請追問。祝 學習...