在數列an中,a1 1,當n 2時,滿足an an 1 2an an 1 0求證 數列1an是等差數列,並求數列an

2021-04-18 13:02:33 字數 3379 閱讀 9281

1樓:海

解答:(i)證明bai:∵當dun≥2時,滿足an-an-1+2an?an-1=0.∴1a

n?1an?1

=2,∴數zhi列dao是等差數列,首項為1a=1,公差d=2.∴1a

n=1+2(n?1)=2n-1.

(版ii)解:bn=a

n2n+1

=1(2n?1)(2n+1)=12

(12n?1

?12n+1

),∴數列的前n項和為tn=1

2[(1?1

3)+(13?1

5)+…+(1

2n?1

?12n+1

)]=1

2(1?1

2n+1)=n

2n+1

.∴2tn(2n+1)≤m(n2+3)化為2n≤m(n2+3),化為m≥2nn+3

.令f(n)=2nn+3

=2n+3n,

函式g(x)=x+3

x(x>0),g′(x)=1?3x=x

?3x,令g′(x)>0,解得x>

3,此時函式g(x)單調遞增;令g′(x)<0,解得0<x<3,此時函式g(x)單調遞減.

∴當x=

3時,函式g(x)取得最小值.

∴當n=1,2時,f(n)單調遞增;當n≥2時,f(n)單調遞減.∴當n=2時,f(n)取得最大值,∴權

m≥47.

在數列{an}中,a1=1,當n≥2時,其前n項和sn滿足sn(sn-an)+2an=0(ⅰ)證明數列{1sn}是等差數列;(ⅱ

2樓:愛刷

解答:證明:(i)∵當n≥2時,an=sn-sn-1,且sn(sn-an)+2an=0

∴sn[sn-(sn-sn-1)]+2(sn-sn-1)=0即sn?sn-1+2(sn-sn-1)=0即1sn-1

sn?1=12

又∵s1=a1=1,故數列是以1為首項,以12為公差的等差數列

(ii)由(i)得:1sn

=n+1

2∴sn=2

n+1當n≥2時,an=sn-sn-1=?2n(n+1)

∵n=1時,?2

n(n+1)

無意義故an=

1,n=1

?2n(n+1)

,n≥2

(iii)∵bn=s

nn=2n(n+1)

=2(1n-1

n+1)

∴tn=2(1-12+1

2-13+…+1n-1

n+1)=2(1-1

n+1)=2nn+1

已知數列{an}中,a1=1,當n≥2時,其前n項和sn滿足sn2-ansn+2an=0.(1)求an.(2)若bn=2n-1,記{1bnsn

3樓:秋梵樂戎

(1)由s1=a1=1,sn

2-ansn+2an=0知,

(1+a2)2-a2(1+a2)+2a2=0,解得,a2=-1

3,s2=23,

∵sn2-ansn+2an=0,

∴sn2-(sn-sn-1)sn+2(sn-sn-1)=0,∴sn-1sn+2sn-2sn-1=0,∴1sn?1

sn?1=12

,則數列是以1為首項,1

2為公差的等差數列,則1s

n=1+1

2(n-1)=n+12,

則sn=2

n+1,

則當n≥2時,an=sn-sn-1=2

n+1-2

n=-2

n(n+1)

;則an=

1,n=1

?2n(n+1)

,n≥2

.(2)由題意,

tn=1

1?1×1+1

2?1×32+1

3?1×2+…+1

n?1×n+12①;

2tn=2×1+1

1?1×32+1

2?1×2+…+1

n?2×n+12②;

②-①得,

tn=2+12(1

1?1+1

2?1+1

3?1+…+1

n?2)-1

n?1×n+1

2=2+1

2×1?1

n?11?1

2-n+1

n=3-n+3

n<3.

在數列{an}中,a1=1,當n≥2時,其前n項和sn滿足:2sn2=an(2sn-1).(ⅰ)求證:數列{1sn}是等差數列,

4樓:雲之墊付

(sn)²=[sn-s(n-1)](sn-1/2)(sn)²=(sn)²-sn/2-sns(n-1)+s(n-1)/2sn+2sns(n-1)-s(n-1)=0s(n-1)-sn=2sns(n-1)

兩邊除以sns(n-1)

1/sn-1/s(n-1)=2

1/sn等差,d=2

s1=a1=1

1/sn=1/s1+2(n-1)=2n-1sn=1/(2n-1)

bn=1//[(2n-1)(2n+1)]

=1/2*2[(2n-1)(2n+1)]

=1/2*[(2n+1)-(2n+1)]/[(2n-1)(2n+1)]

=1/2*

=1/2*[1/[(2n-1)-1/(2n+1)]所以tn=1/2*(1-1/3+1/3-1/5+1/5-1/7+……+1/[(2n-1)-1/(2n+1)]

=1/2*(1-1/(2n+1)]

=n/(2n+1)

5樓:狼軍

解答:(ⅰ)證明:當n≥2時,其前n項和sn滿足:2sn2=an(2sn-1).

∴2s2

n=(sn?s

n?1)(2s

n?1),

化為1sn?1

sn?1

=2,∴數列是等差數列,∴1s

n=1+2(n?1)=2n-1,

∴sn=1

2n?1

.(ii)bn=s

n2n+1

=1(2n?1)(2n+1)=12

(12n?1

?12n+1

),∴數列的前n項和為tn=1

2[(1?1

3)+(13?1

5)+…+(1

2n?1

?12n+1

)]=1

2(1?1

2n+1

)=n2n+1

.∴2tn(2n+1)≤m(n2+3)化為m≥2nn+3,∵2nn+3

=2n+3n<2

2+32=47

.∴m≥47.

使得2tn(2n+1)≤m(n2+3)對所有n∈n*都成立的實數m的取值範圍是[4

7,+∞).

在數列an中,a1 1,且對於任意正整數n,都有an

a n 1 an n 2 n,a1 1,an n 1 n 1 a n 1 n 1 n n 1 n 2 a n 2 n 1 n n 1 4 3 n 1 n 2 2 1 a1 n n 1 2 用累乘法。an an a n 1 a n 1 a n 2 a2 a1 a1 n 1 n 1 n n 2 4 2 ...

在數列an中,a11,an2Sn2Sn1n

利用an sn ssn s 2sn 2sn 1 sn s 2sn 1 2sn 2sn sn 2sns s 2sn sn 2sns s 0 兩端源同時 bai除以 sns1 sn 1 s 2 所以1 sn 是公差dud 2的等差 zhi數列 1 sn 1 s1 n 1 d 1 sn 1 a1 2 n ...

已知數列an中a11前n項和snn2an

s2 4a2 3 a2 a1 a2 3a1 3 s3 5a3 3 a3 s2 a3 3s2 2 6 an sn s n 1 n 2 an 3 n 1 a n 1 3 n 1 an 3 n 1 a n 1 3an n 1 n 1 a n 1 an n 1 n 2 如果認為講解不夠清楚,請追問。祝 學習...