用分部積分法求不定積分x 1 xarctanxdx

2021-05-05 17:11:02 字數 821 閱讀 3344

1樓:

答案如下:

分部積分法是微積分學中的一類重要的、基本的計算積分的方法。它是由微分的乘法法則和微積分基本定理推導而來的。它的主要原理是將不易直接求結果的積分形式,轉化為等價的易求出結果的積分形式的。

∫ u'v dx = uv - ∫ uv' dx。

分部積分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' dx,這就是分部積分公式

也可簡寫為:∫ v du = uv - ∫ u dv常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c

2樓:匿名使用者

∫xarctanxdx =(1/2)∫ arctanxd(x²) 分部積分 =(1/2)x²arctanx - (1/2)∫ x²/(1+x²) dx =(1/2)x²arctanx - (1/2)∫ (x²+1-1)/(1+x²) dx =(1/2)x²arctanx - (1/2)∫ 1 dx + (1/2)∫ 1/(1+x²) dx =(1/2)x.

求不定積分xxdx,求不定積分x1xdx

轉化成冪函式的形式,然後再進行積分 x x2 dx x 3 2 dx 2 x 1 2 c 2 x c 詳細過程如圖rt.希望能幫到你解決問題 求不定積分 x 1 x dx 題目不太明確,如果被積函式是 sqrt x 1 x,那麼太簡單了。我想你的被積函式可能是 sqrt x 1 x 則結果是 看了你...

不定積分計算用湊微分法,不定積分中的湊微分法解釋一下

內容來自使用者 李長漢 第二節不定抄積分的湊 微分法bai 一 不定積分的湊微分法 例du6.2.1 zhi 通過dao湊微分公式,湊出一箇中間變數 被積函式中那個複合函式的中間變數 得到一個不定積分公式的左邊,從而套公式解決問題 這是 湊微分法 的主要思想.二 不定積分的湊微分舉例 例6.2.2求...

高數不定積分湊微分法中求K問題,不定積分的湊微分法問題

你的思考來 方向錯了,其實這個很自 簡單的,就是用初等函式的求導公式。舉個例子,lnx 1 x,寫成微分形式就是 1 x dx d lnx 如果前面有係數,比如 2 x dx 2 1 x dx 2d lnx 就是在你熟悉求導公式的基礎上,提一個常數出來 這裡的2 使剩下的部分剛好可以用求導公式套。再...