一道不定積分題!求不定積分1 sinx cosx dx

2021-05-25 08:46:58 字數 3472 閱讀 9904

1樓:數神

解答:解法一:萬能代換!

令u=tanx/2,則sinx=2u/(1+u²),cosx=(1-u²)/(1+u²),dx=2du/(1+u²),於是得

∫1/(sinx+cosx)=∫2/(1+2u-u²)du

=√2/2∫[1/(u-(1-√2))-1/(u-(1+√2))]du

=√2/2ln|(u-(1-√2))/(u-(1+√2))|+c

=√2/2ln|(tanx/2-1+√2)/(tanx/2-1-√2)+c.

解法二:

∫dx/(sinx+cosx)=√2/2∫dx/(√2/2sinx+√2/2cosx)=√2/2∫dx/cos(x-π/4)

=√2/2∫sec(x-π/4)d(x-π/4)

=√2/2ln|sec(x-π/4)+tan(x-π/4)|+c.

2樓:匿名使用者

這裡有

∫1/(sinx+cosx)dx,這題咋做啊?? 5

3樓:介於石心

=∫dx/√2sin(x+π/4)

=-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)=-(√2/4)

=-(√2/4)ln+c

=(√2/4)ln+c

設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+ c(其中,c為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。

求函式f(x)的不定積分,要求出f(x)的所有的原函式,由原函式的性質可知,只要求出函式f(x)的一個原函式,再加上任意的常數c就得到函式f(x)的不定積分。

4樓:吉祿學閣

這個是三角函式的不定積分,分母應先進性化簡,計算步驟為:

=∫dx/√2sin(x+π/4)

=-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4)=-(√2/4)

=-(√2/4)ln+c

=(√2/4)ln+c

歸納一下,這類分母是形如asinx+bcosx的情形,可以利用三角函式的公式,化簡成形如asin(x+t)或者bcos(x+t)的形式,再進行求解。

5樓:雪劍

=∫1/[√2sin(x+π/4)]dx

=√2/2∫1/sin(x+π/4)d(x+π/4)令t=x+π/4則

上式=√2/2∫1/sint dt

=√2/2∫1/(2sint/2 cost/2) dt=√2/2∫1/(tant/2 cos²t/2) dt/2=√2/2∫1/(tant/2) d(tant/2)=√2/2ln|tant/2|+c

故:原式=√2/2ln|tan(x/2+π/8)|+c

6樓:匿名使用者

把分母化成(根號2)* sin(x+pi/4),然後化成csc(x+pi/4),再對照公式即可求出。

學不定積分不是有一些公式的嗎?照那個∫csc x dx 的公式套就行啦,x換成(x+pi/4),前面再乘以二分之根號二就行啦,我這種方法是最簡單的了。

高數不定積分 求∫1/(2+cosx)sinx dx = ?

7樓:不是苦瓜是什麼

用到cscx和cotx的原函式公式。

sinxdx=-d(cosx),用換元法

請見下圖:

不定積分的公式

1、∫ a dx = ax + c,a和c都是常數

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

3、∫ 1/x dx = ln|x| + c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c

9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c

10、∫ secx dx =ln|cot(x/2)| + c = (1/2)ln|(1 + sinx)/(1 - sinx)| + c = - ln|secx - tanx| + c = ln|secx + tanx| + c

8樓:demon陌

用到cscx和cotx的原函式公式。

請見下圖:

擴充套件資料:

證明:如果f(x)在區間i上有原函式,即有一個函式f(x)使對任意x∈i,都有f'(x)=f(x),那麼對任何常數顯然也有[f(x)+c]'=f(x)。

即對任何常數c,函式f(x)+c也是f(x)的原函式。這說明如果f(x)有一個原函式,那麼f(x)就有無限多個原函式。

設g(x)是f(x)的另一個原函式,即∀x∈i,g'(x)=f(x)。於是[g(x)-f(x)]'=g'(x)-f'(x)=f(x)-f(x)=0。

由於在一個區間上導數恆為零的函式必為常數,所以g(x)-f(x)=c』(c『為某個常數)。

這表明g(x)與f(x)只差一個常數.因此,當c為任意常數時,表示式f(x)+c就可以表示f(x)的任意一個原函式。也就是說f(x)的全體原函式所組成的集合就是函式族{f(x)+c|-∞由此可知,如果f(x)是f(x)在區間i上的一個原函式,那麼f(x)+c就是f(x)的不定積分,即∫f(x)dx=f(x)+c。

因而不定積分∫f(x) dx可以表示f(x)的任意一個原函式。

9樓:喵喵喵

用到cscx和cotx的原函式公式。

請見下圖:

擴充套件資料做題技巧:

1、對被積函式中的複雜項進行試探性的求導,因為你對複雜項求導後,一般會發現被積函式表示式中含有求導後的項,這樣就可以進行約分。

2、換元法:對複雜項考慮整體代換。

3、分部積分法:微分方程裡面的朗斯基行列式和abel積分公式。

4、有理函式積分法:利用恆等式的思想代入特殊值。

5、湊微分法:用恆等變形的思路處理被積表示式。

10樓:幽靈

這裡給出的是拆分的方法...

用到cscx和cotx的原函式公式

請見下圖

11樓:匿名使用者

ok,最好表達為∫dx/[(2+cosx)sinx],多加個中括號

用有理積分法,分為幾個部分分式

一道高數不定積分選擇題,一道高數不定積分題目?

ans d dx x lnx c 一道高數不定積分題目?10 1 x 2 1 x 2 dx 2 1 x 2 1 x 2 dx 2 1 x 2 1 dx 2arctanx x c 一道高數不定積分的題?詳細過程 如圖所示 希望有所幫助 2,2 f x f x x x dx 2,2 f x f x x ...

求下列不定積分,求下列不定積分

用換元法積分,將無理式改成有理式,再進行積分 解 1 令 1 x t,x t 2 1,dx 2tdt 原式 2t t 2 1 t dt 2t t 1 2 2 3 4 dt dt d t 1 2 2 3 4 2 3 1 2 3 t 1 2 2 1 d 2 3 t 1 2 ln t 1 2 2 3 4 ...

求不定積分xxdx,求不定積分x1xdx

轉化成冪函式的形式,然後再進行積分 x x2 dx x 3 2 dx 2 x 1 2 c 2 x c 詳細過程如圖rt.希望能幫到你解決問題 求不定積分 x 1 x dx 題目不太明確,如果被積函式是 sqrt x 1 x,那麼太簡單了。我想你的被積函式可能是 sqrt x 1 x 則結果是 看了你...