關於數學的,關於數學的資料

2021-08-26 12:54:25 字數 5106 閱讀 7827

1樓:匿名使用者

興趣是學好數學的基礎,功利心太強,只是為了考試而學習數學,一般都學不好數學的。理解基本概念,掌握基本方法,是學習數學的第一要義。題目不要做得太多,但一定要做得正確,做得明白,做得能舉一反三。

題海戰術是為了應付考試想出來的損招,很多人就是因此失去了學習數學的興趣。心態要放平,不要鑽牛角尖,不要想一步登天,不要因為遇到個別不會做的題目煩躁。這世界上是沒有一個人能包解數學題的,所以有題目不會做是正常的,一點不可怕,可怕的倒是那種什麼題目都「會」做、都敢做,一點不在乎規則的人,這種人也許是沒有藥可治的。

2樓:

那就是多做題目了,要理解做每個題的思路

關於數學的資料 5

3樓:匿名使用者

數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推匯出的真理。

意義數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的邏輯推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。

雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇**值。

數學史基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文字內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。

數學研究的各領域

數學主要的學科首要產生於商業上計算的需要、瞭解數與數之間的關係、測量土地及**天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:

至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。   數量   數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括瞭如費馬最後定理之著名的結果。

  當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成複數。數的進一步廣義化可以持續至包含四元數及八元數。

自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較。

  結構   許多如數及函式的集合等數學物件都有著內含的結構。這些物件的結構性質被**於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。

在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。

向量分析則將其擴充套件至第四個基本的領域內,即變化。   空間   空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及

數,且包含有非常著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。

在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。

  基礎與哲學   為了搞清楚數學基礎,數學邏輯和集合論等領域被髮展了出來。德國數學家康託(georg cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。cantor的工作給數學發展帶來了一場革命。

由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,pioncare也把集合論比作有趣的「病理情形」,kronecker還擊cantor是「神經質」,「走進了超越數的地獄」。對於這些非難和指責,cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.

」    集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家hilbert在德國傳播了cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家russell把cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。

  數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞迴論、模型論和證明論,且和理論電腦科學有著密切的關連性。

中國古代數學的發展

魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐嶽撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。

  趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。

  劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。

  劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓臺的體積時,劉徽為徹底解決球的體積提出了正確途徑。

  東晉以後,中國長期處於戰爭和南北**的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:

計算出圓周率在3.1415926~3.1415927之間;提出祖?原理;提出二次與三次方程的解法等。

  據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久;   祖沖之之子祖?總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖?公理。

祖?應用這個公理,解決了劉徽尚未解決的球體積公式。   隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。

王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。   唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。

由太史令李淳風等編纂註釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為準。李淳風等編纂的《算經十書》,對儲存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。

隋唐時期,由於曆法的需要,天算學家創立了二次函式的內插法,豐富了中國古代數學的內容。   算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。

尤其是「珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。

  唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。

關於數學的名言名句(要少一點)

4樓:匿名使用者

高斯(數學王子)說:「數學是科學之王」

羅素說:「數學是符號加邏輯」

畢達哥拉斯說:「數支配著宇宙」

哈爾莫斯說:「數學是一種別具匠心的藝術」

米斯拉說:「數學是人類的思考中最高的成就」

拉普拉斯說:「在數學中,我們發現真理的主要工具是歸納和模擬」

倫琴說:「第一是數學,第二是數學,第三是數學」

皮婁(加拿大生物學家)說:「生態學本質上是一門數學」

傅立葉說:「數學主要的目標是公眾的利益和自然現象的解釋」

羅巴切夫斯基說:「不管數學的任一分支是多麼抽象,總有一天會應用在這實際世界上」

萊布尼茲說:「用一,從無,可生萬物」

亞里士多德說:「思維自疑問和驚奇開始」

努瓦列斯說:「數學家本質上是個著迷者,不迷就沒有數學」

羅素說:「在數學中最令我欣喜的,是那些能夠被證明的東西」

波利亞說:「從最簡單的做起」

高斯說:「寧可少些,但要好些」「二分之一個證明等於0」

維特根斯坦說:「數學是各式各樣的證明技巧」

華羅庚說:「新的數學方法和概念,常常比解決數學問題本身更重要」

納皮爾說:「我總是盡我的精力和才能來擺脫那種繁重而單調的計算」

培根(英國哲學家)說:「數學是開啟科學大門的鑰匙」

布林巴基學派(法國數學研究團體)認為:「數學是研究抽象結構的理論」

黑格爾說:「數學是上帝描述自然的符號」

魏爾德(美國數學學會主席)說:「數學是一種會不斷進化的文化」

柏拉圖說:「數學是一切知識中的最高形式」

考特說:「數學是人類智慧皇冠上最燦爛的明珠」

數學的問題關於數學的問題

面對國際金融危機,某鐵路旅行社為吸引市民組團去某風景區旅遊,推出如下標準 人數 不超過25人 超過25人但不超過50人 超過50人人均旅遊費 1500元 每增加1人,人均旅遊費降低20元 1000元某單位組織員工去該風景區旅遊,設有x人蔘加,應付旅遊費y元 1 請寫出y與x的函式關係式 怎麼解?一 ...

數學排水問題關於數學的問題

一個游泳池,兩個排水管,單開甲管3小時灌滿,單開乙管6小時灌滿,單開排水管4小時排完,如3個管同時開,多少時間可將游泳池灌滿?1 1 3 1 6 1 4 1 1 4 4小時 1 1 3 1 6 1 4 1 1 4 4 小時 來 說明源 甲每小時進水1 3 乙每小時進水1 6 每小時排水1 4 三管同...

關於數學急數學好的請進

我初中數學很不錯,事實上我的數學自上初中就很不錯,但是現在大學的數學很差。我不知道你是初幾的,但是怎麼說我都比你大三四歲,三四年的數學教育變化是很大的,但是可以說的是數學萬變不離其宗,做題,多做多練,上課認真聽,當然如果跑神了,回家一定要看,這就是我大學數學差的原因,走神太多,不想上課,長此以往,考...