1樓:匿名使用者
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積=底×高÷2
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=稜長×稜長×6
正方體的體積=稜長×稜長×稜長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號 周長c和麵積s
正方形 a—邊長 c=4a
s=a2
長方形 a和b-邊長 c=2(a+b)
s=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
a,b,c-內角
其中s=(a+b+c)/2 s=ah/2
=ab/2·sinc
=[s(s-a)(s-b)(s-c)]1/2=a2sinbsinc/(2sina)
四邊形 d,d-對角線長
α-對角線夾角 s=dd/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 s=ah
=absinα
菱形 a-邊長
α-夾角
d-長對角線長
d-短對角線長 s=dd/2
=a2sinα
梯形 a和b-上、下底長
h-高m-中位線長 s=(a+b)h/2
=mh圓 r-半徑
d-直徑 c=πd=2πr
s=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
c=2r+2πr×(a/360)
s=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 s=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2
≈2bh/3
圓環 r-外圓半徑
r-內圓半徑
d-外圓直徑
d-內圓直徑 s=π(r2-r2)
=π(d2-d2)/4
橢圓 d-長軸
d-短軸 s=πdd/4
立方圖形
名稱 符號 面積s和體積v
正方體 a-邊長 s=6a2
v=a3
長方體 a-長
b-寬c-高 s=2(ab+ac+bc)
v=abc
稜柱 s-底面積
h-高 v=sh
稜錐 s-底面積
h-高 v=sh/3
稜臺 s1和s2-上、下底面積
h-高 v=h[s1+s2+(s1s1)1/2]/3擬柱體 s1-上底面積
s2-下底面積
s0-中截面積
h-高 v=h(s1+s2+4s0)/6
圓柱 r-底半徑
h-高c—底面周長
s底—底面積
s側—側面積
s表—表面積 c=2πr
s底=πr2
s側=ch
s表=ch+2s底
v=s底h
=πr2h
空心圓柱 r-外圓半徑
r-內圓半徑
h-高 v=πh(r2-r2)
直圓錐 r-底半徑
h-高 v=πr2h/3
圓臺 r-上底半徑
r-下底半徑
h-高 v=πh(r2+rr+r2)/3
球 r-半徑
d-直徑 v=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 v=πh(3a2+h2)/6=πh2(3r-h)/3
a2=h(2r-h)
球檯 r1和r2-球檯上、下底半徑
h-高 v=πh[3(r12+r22)+h2]/6圓環體 r-環體半徑
d-環體直徑
r-環體截面半徑
d-環體截面直徑 v=2π2rr2
=π2dd2/4
桶狀體 d-桶腹直徑
d-桶底直徑
h-桶高 v=πh(2d2+d2)/12
(母線是圓弧形,圓心是桶的中心)
v=πh(2d2+dd+3d2/4)/15(母線是拋物線形)
2樓:卿英博
圓周長公式:l=2πr
圓面積公式:s=π(r^2)
圓柱體即公式:v=π(r^2)h
π 是一個常數,r 指圓的半徑,h指圓的高r^2 指半徑的平方。
3樓:初凝丹
體積=底面積*高=∏r*r*h
如何求圓柱的體積,怎樣求圓柱的體積?
圓柱體積公式是用於計算圓柱體體積的公式。圓柱體積 r h s底面積 高先求底面積,然後乘高。圓柱是由兩個大小相等 相互平行的圓形 底面 以及連線兩個底面的一個曲面 側面 圍成的幾何體。在同一個平面內有一條定直線和一條動線,當這個平面繞著這條定直線旋轉一週時,這條動線所成的面叫做旋轉面,這條定直線叫做...
圓柱的體積計算公式?圓柱體積的計算公式是什麼
圓柱體積公式是什麼。圓柱體積 r2 h s底面積 高 h 先求底面積,然後乘高。是圓周率,一般取。r是圓柱底面半徑。h為圓柱的高。還可以是。v 1 2ch r 側面積的一半 半徑。圓柱體的定義 旋轉定義法 一個長方形以一邊為軸順時針或逆時針旋轉一週,所經過的空間叫做圓柱體。平移定義法 以一個圓為底面...
圓柱體積的應用題,關於圓柱體積的應用題和答案。
1.玻璃容器底面積 6 3.14 圓錐體積 6 3.14 0.5 56.52 立方厘米 圓錐的底面積 56.52 1 3 9 18.84 平方釐米 2.圓柱容器的底面積 50 8 平方釐米 小棒的體積 8 6 50 8 8 18 28.125 立方厘米 1 圓柱形玻璃容器的底面積 底面半徑的平方 3...