1樓:匿名使用者
最小公倍數的最小值是222。
設3個數從小到大分別為ax,bx,cx,其中x是他們的最大公因數。
有ax+bx+cx=370
(a+b+c)*x=370
因a
(a+b+c)*x=370=10*37=37*10=370*1ax,bx,cx的最小公倍數=(a、b、c)的最小公倍數*x當a+b+c=10,x=37時,
(a、b、c)的最小公倍數的最小值6,當a=1,b=3,c=6ax,bx,cx的最小公倍數的最小值=6*37 = 222當a+b+c=37,x=10時,
(a、b、c)的最小公倍數的最小值24,當a=1,b=12,c=24ax,bx,cx的最小公倍數的最小值=24*10 =240當a+b+c=370,x=1時,
(a、b、c)的最小公倍數的最小值246,當a=1,b=123,c=246
ax,bx,cx的最小公倍數的最小值246*1 =246綜上所述,當a=1,b=3,c=6,即三個自然數分別等於37、11、222時,
有最小的公倍數222。
2樓:行星的故事
370=2×5×37
為使三個數的最小公倍數最小,就要使它們的公約數儘可能的大,因此,這三個數都應該是37的倍數。顯然,10的所有不等拆分:(1,2,7)、(1,3,6)、(1,4,5)、(2,3,5)中(1,2,7)的公倍數最小。
因此,它們的最小公倍數最小能夠是14×37=518
3樓:沈
370=2×5×37
370-37=333
333除以(2+1)=111
333-111=222
37和111和222的最小公倍數是222
4樓:匿名使用者
最小公倍數的最小值是222
四個不同的自然數和為2013,那麼這四個自然數的最小公倍數最小是多少?求詳細解答過程和邏輯思路。 10
5樓:匿名使用者
四個數的和為2013,那麼可以肯定其中至少有一個數會≥平均數504,要想讓這四個數有最小公倍數,最佳策略就是四個數接近平均數並且最大數是其它數的倍數,這樣最小公倍數就是這個最大數。
2013=3*11*61
先對這幾個因子分解成4項,比較後找到最小的分解。
3和11無法分解
第1種分解:
3*11=20+10+2+1
最小公倍數為20*61=1220
四個數為:1220,610,122,61
第2種分解:
61=36+18+6+1
最小公倍數為33*36=1188
四個數為:1188,594,198,33
可見第2種更優
理論上,這個最小公倍數應該>2013/2=1006其它的可能性應該在1006和1188之間,個人認為應該不存在。
6樓:迷路明燈
2013=3*671,671=2+223*3,這4個最小自然數為1個3*2=6,3個223*3=669,最小公倍數為669*2=1338
7樓:匿名使用者
61=30+15+10+6,所以最小是33*30=990
如果四個不同的自然數和為2013,那麼這四個自然數的最小公倍數是多少??
8樓:匿名使用者
這四個自然數的公倍數取得最小值,其中必有一個數是1,那麼其它三數和是2012
2012= 4*503待續
9樓:匿名使用者
如果四個不同的自然數和為2013,那麼這四個自然數的最小公倍數最小是多少?
2013=990*(1+1/2+1/3+1/5)=990+495+330+198
這四個自然數的最小公倍數最小是990
----------------------------------------------
如果四個不同的自然數和為2013,那麼這四個自然數的最大公約數最大是多少?
設這4個自然數的最大公約數最大為k,
顯然,k是2013的約數
2013/k≥(1+2+3+4)=10
k≤201.3
因為2013=3*11*61的約數中<201.3的最大約數是3*61=183
所以這4個自然數的最大公約數的最大值為183
如果四個不同的自然數和為2013,那麼這四個自然數的最小公倍數是多少??
10樓:賀長順舜詞
如果四個不同的自然數和為2013,那麼這四個自然數的最小公倍數最小是多少?
2013=990*(1+1/2+1/3+1/5)=990+495+330+198
這四個自然數的最小公倍數最小是990
----------------------------------------------
如果四個不同的自然數和為2013,那麼這四個自然數的最大公約數最大是多少?
設這4個自然數的最大公約數最大為k,
顯然,k是2013的約數
2013/k≥(1+2+3+4)=10
k≤201.3
因為2013=3*11*61的約數中<201.3的最大約數是3*61=183
所以這4個自然數的最大公約數的最大值為183
11樓:黎孝威水
設四個連續自然數的和=n-2+n-1+n+n+1=4n-2=18n=5,四個數分別為3,4,5,6
3=34=2×2
5=56=2×3
那麼這四個四個數的最大公約數是(
1),最小公倍數是(
2×2×3×5=60
)。明教為您解答,
如若滿意,請點選[滿意答案];如若您有不滿意之處,請指出,我一定改正!
希望還您一個正確答覆!
祝您學業進步!
3個連續自然數的最小公倍數是168,那麼這3個連續自然數的和 等於多少
12樓:荊忠郎奇思
汗,斷除一列出來,2,2,2,3,7這幾個質數相互乘,很明顯是6,7,8嘛,之和是21
13樓:祕玲辜含玉
分解質因數
可以得到168=2*2*2*3*7
題中說要連續自然數
所以是6,7,8
6,7,8,三個連續自然數的最小公倍數就是168
14樓:校啟其軼麗
168=2x2x2x3x7
即三數必須分別有其中的因數
因為是連續自然數,即相互差為1
假設最大數為168,則167,166,不符合假設最大數為2x2x2x3=24,則23,22,不符合假設最大數為2x2x2=8,則6,7,符合
15樓:
把168分解質因數得168=2×2×2×3×7,這5個質因數的乘積無論如何也無法得出3個連續的自然數,說明這三個連續的自然數一定不是兩兩互質的,因為兩兩互質的三個數最小公倍數是它們的乘積。這三個連續的自然數中有兩個是偶數,兩個連續的自然數是一奇一偶,所以三個自然數中中間的是奇數。168乘兩個偶數公有的因數2才是三個連續自然數的乘積,168×2=336,336=2×2×2×2×3×7=8×6×7,所以三個連續的自然數為6、7、8,它們的和為21。
16樓:
呵呵,你就是一個垃圾
設a與b是兩個不相等的非零自然數.(1)如果它們的最小公倍數是72,那麼這兩個自然數的和有多少種可能的
17樓:時光°甊
(1)72=1×72=8×9=2×2×2×3×3,
所以:a和b可能是1、72或8、9或72、2、或72、3或72、4或72、6或72、8、或72、9或72、12或72、18或72、24或72、36或36、8或36、24、或24、18或24、9或18、8;
72+1=73,
72+2=74,
72+3=75,
72+4=76,
72+6=78,
72+8=80,
72+9=81,
72+12=84,
72+18=90,
72+24=96
72+36=108,
36+8=44,
36+24=60,
24+18=42,
24+9=33,
18+8=26,
9+8=17,
所以a與b之和可以有17種不同的值;
答:一共有17種不同的值.
(2)60=2×2×3×5,
a=60,b可取60的全部因子式共11個:1,2,3,4,5,6,10,12,15,20,30
a=30,b可取全部因子中所有4的倍數共4個:4,12,20,60
a=20,b可取全部因子中所有3的倍數共6個:3,6,12,15,30,60
a=15,b可取全部因子中所有4的倍數共4個:4,12,20,60
a=12,b可取全部因子中所有5的倍數共6個:5,10,15,20,30,60
a=10,b可取全部因子中所有12的倍數共2個:12,60
a=6,b可取全部因子中所有20的倍數共2個:20,60
a=5,b可取全部因子中所有12的倍數共2個:12,60
a=4,b可取全部因子中所有15的倍數共3個:15,30,60
a=3,b可取全部因子中所有20的倍數共2個:20,60
a=2,b可取全部因子中所有60的倍數共1個:60
a=1,b可取全部因子中所有60的倍數共1個:60
共計11+4+6+4+6+2+2+2+3+2+1+1=44對,
如果不考慮a,b的順序也應有22種情況.
(1,60),(2,60),(3,20),(3,60),(4,15),(4,30),(4,60),(5,12),(5,60),(6,20),(6,60),
(10,12),(10,60),(12,15,),(12,20),(12,30),(12,60),
(15,20),(15,60),(20,30),(20,60),(30,60)
它們的差是:2,3,5,7,8,10,11,14,17,18,26,30,40,45,48,50,54,55,56,57,58,59.
答:共有22種不同的差.
兩個自然數差是7,他們的最小公倍數與最大公約數差是203,這兩個數的和是多少?
18樓:匿名使用者
解:因為兩個不同的自然數相差5
(1)兩個不同的自然數的最大公約數是2或2的倍數時,則這兩個不同的自然數的差是偶數,故:這兩個不同的自然數的最大公約數不是2或2的倍數
(2)兩個不同的自然數的最大公約數是3或3的倍數時,則這兩個不同的自然數的差是3的倍數,故:這兩個不同的自然數的最大公約數不是3或3的倍數
(3)兩個不同的自然數的最大公約數大於5時,則則這兩個不同的自然數的差一定大於5
綜合以上分析,這兩個不同的自然數的最大公約數只能是1或5
當這兩個不同的自然數的最大公約數是1時,即:這兩個不同的自然數互質,故:它們的最小公倍數就是兩數的乘積,並且為(203+1=204),又:
204=12×17,符合。故:這兩個不同的自然數是12、17,故:
這兩個自然數的和是29
當這兩個不同的自然數的最大公約數是5時,則:它們的最小公倍數一定是5的倍數,但根據已知條件可知:它們的最小公倍數是(203+5=208),不是5的倍數,不符合
故:這兩個自然數的和是29
寫出不相同的自然數,使其中任意自然數的和能被3整除,這自然數的和至少是
因為0是最小的自然數,若要5個自然數任意3個的和能被3整除,並且5個自然數的和最少 其中的一個自然數為0,另外的4個自然數只要都是3的整數倍就可以 所以最小的和為 0 3 6 9 12 30 故答那為 30 0為最小的自然數,同時,它又有一個性質 0 a a故選定0,另外的4個自然數只要都是3的整數...
各位數互不相同的五位數,能被3,5,7,11整除,那麼當
3 5 7 11的最 bai小公倍du數為3 5 5 11 1155,又知最大的五位zhi數dao是99999,就用內99999 1155 86.669,因此容滿足條件的最大五位數就是1155 86 99330,一個各位數互不相同的五位數最大是1155 85 98175,各位數字和為9 8 1 7 ...
有多少個三位數,它的數碼互不相同且十位上的數碼等於其它兩個數碼之和的末位數
十位9,其它1 8,2 7,3 6,4 5,共8個十位8,其它1 7,2 6,3 5,共6個十位7,其它1 6,2 5,3 4,8 9,共8個十位6,其它1 5,2 4,9 7,共6個十位5,其它1 4,2 3,8 7,9 6,共8個十位4,其它1 3,6 8,9 5,共6個十位3,其它1 2,6 ...