依舊是數學的排列應用題 過程很重要

2025-02-04 21:50:13 字數 2452 閱讀 7731

1樓:網友

分類討論:1. 6選4中沒有數學與體育課:則選出4門隨意排:a44=24種。

2. 6選4中有數學,無體育:對於選擇課:另外3門c43=4種情況;對於排序:2(數學只能在2或者3截)*a33(另外3門隨意)=12,所以總共4*12=48種情況。

3. 6選4中有體育,無數學:同2,48種。

4. 6選4中有體育,有數學:對於選擇課:另外2門c42=6種情況;對於排序:2(數學2體育3或者體育2數學3)*a22(另外2門隨意)=4種,總共6*4=24種。

最後1+2+3+4=24+48+48+24=144種情況ps:gerongquan,576種,你搞笑的吧- -#

2樓:網友

先排第一節和第四節,四門課中選兩門有順序(語文、英語、物理、化學),再中間兩節課,也是四選二有順序(除去已選的兩節課)。

a42乘a42等於12*12=144

原來是我算錯了。

3樓:愛我一家

除去數學體育還有四門課。

第一節課可以從四門課程中選。

第四節可從餘下的三門課中選。

再剩下的兩門可從數學體育和第一次排列後剩下的兩門課裡選。

我打不上符號,很抱歉。

高中數學,排列組合應用題,求解!!!!

4樓:邗寧齋斯伯

優白放法種數應等於優黑方法種數。

所以只要求出。

白球對應的盒子編號之和。

等於黑球所對應的盒子編號之和這種放法的種數k,就可以求出優白放法種數為(8選4-k)/2=(70-k)/2考慮a、b、c、d∈,ab=2,c=7,d=8b=3,c=6,d=8

b=4,c=5,d=8或b=4,c=6,d=7(2)當a=2

b=3,c=5,d=8或b=3,c=6,d=7b=4,c=5,d=7

3)當a=3

b=4,c=5,d=6

以上共8種,即k=8

所以優白放法種數=(70-8)/2=31種。

高中數學題(排列應用題)

5樓:左子沐

甲不能去銀川者伍,1.甲去西襪行寧,乙有三種;

2.甲不去西寧,甲還有兩種,乙不能去西寧首好或,甲又也沒去西寧,乙也只有兩種,共 1*3+2*2=7 種去法。

這道關於排列數學題目怎麼做?{要步驟}

6樓:古舟碩驪婧

有標號為1,2,3,4,5的五個紅球和標號為1,2的兩個白球,將這七個球排成一排,使兩端都是紅球。

1)如果每個白球的兩邊都是紅球有多少種排法?

解:先將5個紅球排成一排a(5,5)

要求兩端是紅球,且白球不相鄰,則在5個紅球的四個空檔中插入白球即可。

a(4,2)

所以一共有a(5,5)a(4,2)

2)如果1號紅球和1號白球相鄰排在一起有多少種排法?

解:兩個1號球當作乙個紅球。

a(5,5)*a(2,2)

排除1號白球在兩端的情況:a(4,4)+a(4,4)

同上插空。所以一共有。

2a(5,5)-2a(4,4))*a(4,1)

3)同時滿足上述兩個條件的排法有多少種?

解:即白球不相鄰,1號的兩個球在一起,紅球不在兩端。

等。有標號為1,2,3,4,5的五個紅球和標號為1,2的兩個白球,將這七個球排成一排,使兩端都是紅球。

1)如果每個白球的兩邊都是紅球有多少種排法?

解:先將5個紅球排成一排a(5,5)

要求兩端是紅球,且白球不相鄰,則在5個紅球的四個空檔中插入白球即可。

a(4,2)

所以一共有a(5,5)a(4,2)

2)如果1號紅球和1號白球相鄰排在一起有多少種排法?

解:兩個1號球當作乙個紅球。

a(5,5)*a(2,2)

排除1號白球在兩端的情況:a(4,4)+a(4,4)

同上插空。所以一共有。

2a(5,5)-2a(4,4))*a(4,1)

3)同時滿足上述兩個條件的排法有多少種?

解:如果紅1號在兩邊,則1號白球只有一種選擇所以方案為2*a(4)(4)*c(3)(1)=6a(4)(4)

如果紅1號不在兩端,其位置有三種可能對於每一種情況,白1號有兩種選擇所以方案為3*2*a(4)(4)*c(3)(1)=18a(4)(4)

所以總方案為24a(4)(4)=24^2=576

數學排列應用題

7樓:吸門吹光

一共出現24個不同的數字。

1 2 3 4這四個數字每個數字在每隔數位上出現6次所以1000*6+2000*6+3000*6+4000*6+100*6+200*6+300*6+400*6+10*6+20*6+30*6+40*6+1*6+2*6+3*6+4*6=66660

貌似是這樣的吧。

數學有關勾股定理的應用題的過程,求數學勾股定理應用題過程及答案

1 餘弦定理 c 2 a 2 b 2 2abcosc c為一邊,c為c邊對的角,cos為c的餘弦 所以,勾股定理中,因為當三角形為直角時,c 90度,cos90度 0,所以得到 2 勾股定理 餘弦定理特例 c 2 a 2 b 2 c為斜邊 3 應用這個定理,可以設未知數,也就可以直接運用。例如要畫根...

急急急求!小學數學應用題,求詳細解答過程,題目如下

甲4天的工資比乙5天的工資多40元,若不算這40元,或者,換句話講 每天另外補給甲 40 4 10元。剩下則 甲4天的工資等於乙5天的工資,甲1天的工資等於乙5 4 1.25天的工資,甲10天,就等於乙12.5天。1120 10 10 1020 元 甲幹10天,補給100元 甲的10天,相當於乙的1...

小學數學六年級應用題。要過程

設濱海大學的足球場長設3x,寬為2x 3x 2x 350 2 x 35 長 3 35 105 寬 2 35 70 100 105 110 64 70 75 這個大學的足球場能做標準足球比賽場地 長和寬的和是 350 2 175 米 長是175 3 2 分之3 105 米 寬是175 3 2 分之2 ...