高二數學複數運算,高中數學複數怎麼算

2021-05-21 19:54:14 字數 4948 閱讀 5401

1樓:藍色海洋

|(1)w=2i+3(1-i)-4=-1-i,所以zhidaow+i=-1,因此回|w+i|=1(2)z^答2-z+1=2i-(1+i)+1=i(3)顯然z^2+az+b=(1-i)(z^2-z+1)=(1-i)*i=1+i,即

2i+a(1+i)+b=1+i,所以a+b=1,a+2=1,所以a=-1,b=2

高中數學複數怎麼算

2樓:匿名使用者

加減法 加法法則 複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律, 即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則 複數的減法按照以下規定的法則進行:

設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。 2乘除法 乘法法則 規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi2,因為i2=-1,所以結果是(ac-bd)+(bc+ad)i 。

兩個複數的積仍然是一個複數。 除法法則 複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:

可以把除法換算成乘法做,在分子分母同時乘上分母的共軛. 所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

1設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi 分母有理化 ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi. 由複數相等定義可知 cx-dy=a,dx+cy=b 解這個方程組,得 x=(ac+bd)/(c2+d2) y=(bc-ad)/(c2+d2) 於是有:

(a+bi)/(c+di)=(ac+bd)/(c2+d2)+i(bc-ad)/(c2+d2) 2利用共軛複數將分母實數化得(見右圖): 點評:1是常規方法;2是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.

所以可以分母實數化. 把這種方法叫做分母實數化法。 怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法 複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證. 用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理. 1.

用於證三角形為正三角形 典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

證明思路分析 以三角形的相重合的外心(重心),為原點o建立起複平面上的直角座標系.設321,,zzz表示三角形的三個頂點,其對應的複數是.,,321zzz因o為外心,故,||||||321rzzz又o為重心。

3樓:匿名使用者

法則加減法

加法法則

複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。

複數的加法滿足交換律和結合律,

即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則

複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。

2乘除法

乘法法則

規定複數的乘法按照以下的法則進行:

設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.

其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi2,因為i2=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是一個複數。 除法法則

複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.

所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:

1設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi

∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi.

由複數相等定義可知 cx-dy=a,dx+cy=b

解這個方程組,得 x=(ac+bd)/(c2+d2) y=(bc-ad)/(c2+d2)

於是有:(a+bi)/(c+di)=(ac+bd)/(c2+d2)+i(bc-ad)/(c2+d2)

2利用共軛複數將分母實數化得(見右圖):

點評:1是常規方法;2是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.所以可以分母實數化.

把這種方法叫做分母實數化法。

怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。

平面幾何問題的複數解法

複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證.

用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理.

1.用於證三角形為正三角形

典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.

高中數學複數的計算

4樓:三城補橋

1、複數在選修選材2-2中

2、選修2-2的各章內容如下:

第一章 導數及其應用

第二章 推理與證明

第三章 數系的擴充與複數的引入

3、第一章 主要介紹了導數的概念、導數在研究函式中的作用,微積分基本定理等內容

第二章 主要介紹了 合情推理與演繹推理及各種證明方法:如分析法、綜合法、反證法、數學歸納法

第三章 主要介紹了複數的概念與運算

5樓:衡順慈蒼洮

在複平面中建立

復座標系。橫座標是

實數,縱座標是複數。

所以o(0,0)

a(1,2)

b(-2

,6)由

線段oa平行bc

, 又是

等腰梯形,oc=ab

所以可知

c(-5,0)。其中

(-3,4)捨去。

所以c對應的複數是

-5、、、

6樓:況恕折秋

尤拉公式e^ix=cosx+isinx

複數在高中階段

只是個瞭解

對你解數學題

是沒什麼幫助的

大學後特定條件下

利用複數計算

計算過程會簡便得多

7樓:叢桂花申女

解:設z1=cosa+isina,則z2=-cosa+(2-sina)i.

z1-z2=2cosa+2(sina-1)i丨z1-z2丨=根號下((4cos^2a+4(sina-1)^2)這是三角函式,求出最大值為4.

不懂可以追問

8樓:劇同書喜鸞

複數是為了擴充數系和解類似x^2+1=0這樣的無實數解方程而引入的,引入之後自然要看他有哪些用途,如可簡化問題,圓的方程|z|=r,形式簡單,證明多項式基本定理即證明像一元二次方程有兩個複數解,若是關於x的n次的式子就是n個複數解,引入複數證明了長達幾百年的n次一元方程根的個數問題。現在高中的內容複數實用性不大,主要是估計為了考察知識的全面性才學的,起碼知道有複數這回事,別人說起來能瞭解一點。由於只要求基本運算,內容不是很多,有聯絡的是方程,曲線軌跡,解析幾何,如果學好的話,用複數法解題和向量法一樣能簡化計算過程

9樓:興義焦亦綠

^由1/(x+yi)=u+vi可知,ux-vy=1,uy+vx=0,解得x=u/(u^2+v^2),y=-v/(u^2+v^2),將這個式子帶入直線方程3x+4y=1可知(3u-4v)/(u^2+v^2)=1,化簡得(u-3/2)^2+(v-2)^2=25/4,是一個以(3/2,2)為圓心,5/2為半徑的圓的方程。

10樓:李良劇環

你知道嗎?在古代,人們都知道2-1=1,但是他們都不知道1-2=-1.當有一天有人提出這個問題時。

人們都人驚訝,竟然沒有一個答案,所以負數出現了,現在也是,人們都知道根號100等於10,但是不知道根號負100,因為在我們的認知裡,根號下的負數是錯誤的,但是當這個問題提出來的時候,他就要被解決,那麼,這就是複數的作用。基本等同於負數的作用。

那麼你問的複數可以和高中的什麼只是聯絡在一起,那麼就是根號。

高中數學複數複數乘方怎麼運算,高中數學問題關於複數整數指數冪的問題

把複數分為實數部分,虛數部分,然後根據乘法定理,最後化簡就可以了。高中數學問題關於複數整數指數冪的問題.是對的,複數有幾乎和實數一樣的運算律,這也是複數運用廣泛的原因之一。複數冪指數問題 20 x i e i lnx e i lnx 2 coslnx isinlnx,另外它的模確實有可能無窮大,是不...

高二數學複數,高中數學什麼是複數,純虛數,共軛複數

通通化成指數形式bai 3 1 i 2e dui 4 1 i 2e i 4 同底數冪相除,底數不變zhi指數相減,所以兩個復dao數的商是e i 2 i,而版i 8 1 4 1 3i 2 e 2 i 3 1 3i 2 e 2 i 3 冪的乘方權,底數不變指數相乘,所以兩個複數的冪是e 2 i e 0...

高中數學 複數問題,高中數學複數怎麼算

baiz 2 a du2 z zhi2 a dao2 x 2 y 2 a 專2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2 4x 2y 2 分母上是實數 不用屬管 x 2 y 2 a 2 2xyi x 2...