1樓:匿名使用者
^^通通化成指數形式bai
(3)1+i=√2e^(π
dui/4),1-i=√2e^(-πi/4),同底數冪相除,底數不變zhi指數相減,所以兩個復dao數的商是e^(πi/2)=i,而版i^8=1
(4)(-1+√3i)/2=e^(2πi/3),(-1-√3i)/2=e^(-2πi/3).冪的乘方權,底數不變指數相乘,所以兩個複數的冪是e^(±2πi)=e^0=1,1+1=2
2樓:匿名使用者
^^z= (1+i)/(1-i) = (1/2)(1+i)^2 =i
[(1+i)/(1-i)]^8 = i^8 =1(2)z=(-1+√3i)/2
argz = arctan(-√3) = 2π回/3|答z| =1
z=cos(2π/3)+isin(2π/3)z^3 =cos(2π)+isin(2π)=1z1 =(-1-√3i)/2
argz1 = arctan(√3) = -π/3|z1| =1
z1=cos(-π/3)+isin(-π/3)z1^3 =cos(-2π)+isin(-2π)=1[(-1+√3i)/2]^3 + [(-1-√3i)/2]^3=z^3 +z1^3
=1+1=2
高中數學什麼是複數,純虛數,共軛複數
3樓:曼諾諾曼
複數是形如z=a+bi(a,b均為實數)的數,其中a稱為實部,b稱為虛部,i稱為虛數單位。
純複數是複數的一種,即複數是由純複數與非純複數構成。複數的基本形式為a+bi。其中a和b為實數,i為虛數單位,其平方為-1。
共軛複數,兩個實部相等,虛部互為相反數的複數互為共軛複數。
擴充套件資料
高中數學複數運演算法則:
1、加法法則
複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,則它們的和是(a+bi)+(c+di)=(a+c)+(b+d)i.兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,虛部是原來兩個虛部的和。
複數的加法滿足交換律和結合律,即對任意複數z1,z2,z3,有:z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
2、減法法則
複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,則它們的差是(a+bi)-(c+di)=(a-c)+(b-d)i.兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。
4樓:燕子歸巢月滿樓
複數是指能寫成如下形式的數a+bi,這裡a和b是實數,i是虛數單位(即-1開根)
當複數a+bi中a=0且b≠0時,z=bi,我們就將其稱為純虛數。
兩個實部相等,虛部互為相反數的複數互為共軛複數
5樓:匿名使用者
複數即實數+虛數 的混合共存 如:複數是指能寫成如下形式的數a+bi,這裡a和b是實數,i是虛數單位(即-1開根)。 或如z=a+bi的數稱為複數其中規定i為虛數單位,且i^2=i×i=-1(a,b是任意實數)a 為z的實部,b為z的虛部。
純虛數:當實部為0時,僅剩的虛部為純虛數,如:當a=0且b≠0時,z=bi,我們就將其稱為純虛數。
共軛複數:對於複數z=a+bi,稱複數z'=a-bi為z的共軛複數。即兩個實部相等,虛部(虛部不等於0)互為相反數的複數互為共軛複數.
複數z的共軛複數記作zˊ。表示方法為在字母z上方加一瞥線即共軛符號。
如:︱x+yi︱=︱x-yi︱ 這和實數計算時有區別。
6樓:匿名使用者
設z=a+bi,a,b∈r.
z為複數
a=0,b≠0時,z為純虛數
b=0時,z為實數,b≠0時,z為虛數.
z的共軛複數為a-bi.
高中數學複數怎麼算
7樓:匿名使用者
加減法 加法法則 複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。
複數的加法滿足交換律和結合律, 即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則 複數的減法按照以下規定的法則進行:
設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。 2乘除法 乘法法則 規定複數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。
兩個複數的積仍然是一個複數。 除法法則 複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:
可以把除法換算成乘法做,在分子分母同時乘上分母的共軛. 所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:
①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi 分母有理化 ∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi. 由複數相等定義可知 cx-dy=a,dx+cy=b 解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²) 於是有:
(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²) ②利用共軛複數將分母實數化得(見右圖): 點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.
所以可以分母實數化. 把這種方法叫做分母實數化法。 怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。
平面幾何問題的複數解法 複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證. 用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理. 1.
用於證三角形為正三角形 典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.
證明思路分析 以三角形的相重合的外心(重心),為原點o建立起複平面上的直角座標系.設321,,zzz表示三角形的三個頂點,其對應的複數是.,,321zzz因o為外心,故,||||||321rzzz又o為重心。
8樓:匿名使用者
法則加減法
加法法則
複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i. 兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。
複數的加法滿足交換律和結合律,
即對任意複數z1,z2,z3,有: z1+z2=z2+z1; (z1+z2)+z3=z1+(z2+z3). 減法法則
複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數, 則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i. 兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。
2乘除法
乘法法則
規定複數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈r)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其實就是把兩個複數相乘,類似兩個多項式相乘,得: ac+adi+bci+bdi²,因為i²=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是一個複數。 除法法則
複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈r)叫複數a+bi除以複數c+di的商 運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.
所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數. 除法運算規則:
①設複數a+bi(a,b∈r),除以c+di(c,d∈r),其商為x+yi(x,y∈r), 即(a+bi)÷(c+di)=x+yi
∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i. ∴(cx-dy)+(dx+cy)i=a+bi.
由複數相等定義可知 cx-dy=a,dx+cy=b
解這個方程組,得 x=(ac+bd)/(c²+d²) y=(bc-ad)/(c²+d²)
於是有:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+i(bc-ad)/(c²+d²)
②利用共軛複數將分母實數化得(見右圖):
點評:①是常規方法;②是利用初中我們學習的化簡無理分式時,都是採用的分母有理化思想方法,而複數c+di與複數c-di,相當於我們初中學習的 的對偶式,它們之積為1是有理數,而(c+di)·(c-di)=c2+d2是正實數.所以可以分母實數化.
把這種方法叫做分母實數化法。
怎麼解複平面的問題,此問題太大,就高中數學而言,和解平面解析幾何問題類似。
平面幾何問題的複數解法
複數是高中數學的重要內容之一,在中學數學中,有許多數學問題,如果我們能夠根據題目的具體特徵,將其轉化為複數問題,那麼這類數學問題往往可以得到復巧解妙證.
用複數方法解解平面幾何的基本思路是,首先運用複數表示複平面上的點,然後利用複數的模和幅角的有關性質,複數運算的幾何意義以及複數相等的條件,化幾何問題為複數問題來處理.
1.用於證三角形為正三角形
典型1.求證:若三角形重心與其外心重合,則該三角形必 為正三角形.
高二數學複數運算,高中數學複數怎麼算
1 w 2i 3 1 i 4 1 i,所以zhidaow i 1,因此回 w i 1 2 z 答2 z 1 2i 1 i 1 i 3 顯然z 2 az b 1 i z 2 z 1 1 i i 1 i,即 2i a 1 i b 1 i,所以a b 1,a 2 1,所以a 1,b 2 高中數學複數怎麼算...
高中數學 複數問題,高中數學複數怎麼算
baiz 2 a du2 z zhi2 a dao2 x 2 y 2 a 專2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2xyi x 2 y 2 a 2 2 4x 2y 2 分母上是實數 不用屬管 x 2 y 2 a 2 2xyi x 2...
高中數學,複數題!求解答過程,高中數學複數練習題
a i 2 bi 1 i兩邊同乘 2 bi 得,bai 評註 複數du運算寧肯做乘法zhi dao,不做除法 a i 1 i 2 bi 2 b 2 b i 所以,對應的係數相等內 a 2 b 1 2 b 容 解得 a 3,b 1 a b 3 先化解,上下同時乘以2 bi 2 bi a i 4 b 2...