1樓:匿名使用者
微積分是研究函式的一個數學分支
微積分是與實際應用聯絡著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷髮展。
微積分學是微分學和積分學的總稱,不規則圖形面積體積計算, 變力做功,非勻變速運動都會運用到微積分。
2樓:至者
微積分是與實際應用聯絡著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學等多個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷髮展。
客觀世界的一切事物,小至粒子,大至宇宙,始終都在運動和變化著。因此在數學中引入了變數的概念後,就有可能把運動現象用數學來加以描述了。
由於函式概念的產生和運用的加深,也由於科學技術發展的需要,一門新的數學分支就繼解析幾何之後產生了,這就是微積分學。微積分學這門學科在數學發展中的地位是十分重要的,可以說它是繼歐氏幾何後,全部數學中的最大的一個創造。
學習微積分有什麼用處?
3樓:匿名使用者
例如,微積分在投資決策中的運用:初等數學在經濟生活中的應用十分廣泛,例如在投資決策中,如果以均勻流的存款方式,也就是將資金以流水一樣的方式定期不斷存入銀行中,那麼計算1年後的中價值就可以通過定積分的方式。例如某企業一次性投資某專案2億元,並據頂一年後建成,獲得經濟回報。
如果忽略資金的時間價值,那麼5年時間就能收回成本,但是如果將資金的時間價值考慮進來,可能情況就是有所變化。因此,微積分的應用,讓投資更趨向於理性化,能夠風險,提高回報。
4樓:答聽芹虢凱
典型的中國學生,學了也不知道幹什麼用!
微積分是整個近代科學的基礎。
整個近代力學體系就是在微積分基礎上誕生的。沒有微積分,就沒有整個現代科學,航空航天,****,石油化工,空氣動力學,機械製造,運動**,積體電路,微機控制,逆向工程,光電理論,流體力學,彈性力學,彈道導彈計算等等哪一個離得開微積分?
你想要具體例子是不:見過卡車麼?卡車後橋的主傳動軸的設計,需要用有限單元法來計算,而有限單元法本質上就是
解上萬個未知量的微分方程組。沒有微積分的理論基礎,誰能解的出來?
高階轎車在設計時,需要考慮乘坐舒適性,而舒適性靠車體的振動學特性來保證,也需要做大量的微分方程來計算,對於非線性系統,還需要做偏微分方程的求解。
學微積分到底有什麼用?
5樓:笨蛋蘋果
學物理用!!!
我都是微積分沒學好,現在物理很困難
得不償失啊!
所以好好學~
而且高數和英語都是很重要的,不管考研還是搞其他科學研究。
微積分和乘法口訣差不多吧
都是工具。
公欲善其事,必先利其器~~
我們都加油~~
另!嚴重仇視同濟五版的高數編著!!!太***枯燥了!!
6樓:
以後會學到的有關專業的課程中解決經濟問題將要用到微積分,不過說實話,那東西有點難,還有你會學到《統計學》,它的基礎就是微積分,
但是老闆也不會因為你知道腦筋急轉彎和看樂推理**,就找你把,總要有一個大多數人多不容易會的區別開來咯
7樓:匿名使用者
對於上學來說 是應試
對於生活來說 是開拓思維
8樓:蘭馨小源
就是考試 再其他的用處說不上
9樓:匿名使用者
可以算是基礎,學物理,化學等都會用到的.也算是一種新的思維方法
10樓:字倚雲衣湛
微積分是為了解決變數的瞬時變化率而存在的。從數學的角度講,是研究變數在函式中的作用。從物理的角度講,是為了解決長期困擾人們的關於速度與加速度的定義的問題。
「變」這個字是微積分最大的奧義,要從哲學的角度來理解數學,而不是單純的會計算。所有的數理能力最後都要上升為自身的哲學,這樣才能作到天人合一。這也是我學習的最大原因。努力吧
微積分到底有什麼用
11樓:亦木靜汐
1、對於物理意義
求物體在任意時刻的速度和加速度;反過來,已知物體的加速度表為以時間為變數的函式公式,求速度和距離。這類問題是研究運動時直接出現的,困難在於,所研究的速度和加速度是每時每刻都在變化的。
比如,計算物體在某時刻的瞬時速度,就不能像計算平均速度那樣,用移動的距離去除運動的時間,因為在給定的瞬間,物體移動的距離和所用的時間
2、對於科學天文的作用
這個問題本身是純幾何的,而且對於科學應用有巨大的重要性。由於研究天文的需要,光學是十七世紀的一門較重要的科學研究,透鏡的設計者要研究光線通過透鏡的通道,必須知道光線入射透鏡的角度以便應用反射定律
3、對數學的作用
求曲線的長度(如行星在已知時期移動的距離),曲線圍成的面積,曲面圍成的體積,物體的重心,一個相當大的物體(如行星)作用於另一物體上的引力。
實際上,關於計算橢圓的長度的問題,就難住數學家們,以致有一段時期數學家們對這個問題的進一步工作失敗了,直到下一世紀才得到新的結果。又如求面積問題,早在古希臘時期人們就用窮竭法求出了一些面積和體積,如求拋物線在區間
4、對軍事的作用
例如炮彈在炮筒裡射出,它執行的水平距離,即射程,依賴於炮筒對地面的傾斜角,即發射角。一個「實際」的問題是:求能夠射出最大射程的發射角。
12樓:君子蘭
從事基礎工科研究和實驗的工作者,在建築行業、航空行業,等等,很多地方用到微積分,比如設計院,航空實驗,等等,如果不是基礎工科的從業者,微積分用處不大,現在經濟學也像模像樣抵用起了微積分,
搞篇**不出現點微積分沒水平沒面子,
尤其是金融分支,主要涉及金融產品定價的問題,比如保險費的釐定,衍生品固定收益品定價,風險的量化,等等,都需要概率隨機微積分,
但這也是少數精算師的工作,一般金融工作者也用不著微積分,金融機構少數幾個人就可以完成定價,剩下的就是對市場的**進行買賣了。
13樓:匿名使用者
典型的中國學生,學了也不知道幹什麼用!
微積分是整個近代科學的基礎。
整個近代力學體系就是在微積分基礎上誕生的。沒有微積分,就沒有整個現代科學,航空航天,****,石油化工,空氣動力學,機械製造,運動**,積體電路,微機控制,逆向工程,光電理論,流體力學,彈性力學,彈道導彈計算等等哪一個離得開微積分?
你想要具體例子是不:見過卡車麼?卡車後橋的主傳動軸的設計,需要用有限單元法來計算,而有限單元法本質上就是 解上萬個未知量的微分方程組。沒有微積分的理論基礎,誰能解的出來?
高階轎車在設計時,需要考慮乘坐舒適性,而舒適性靠車體的振動學特性來保證,也需要做大量的微分方程來計算,對於非線性系統,還需要做偏微分方程的求解。
14樓:3分得戲劇性
是你以後學習各種專業課程的基礎,比如大學物理,概率論,等等,甚至程式設計都需要哦~
學習微積分的作用
15樓:宮帥王耘志
一言而蔽之,微積分是研究函式的一個數學分支。函式是現代數學最重要的概念之一,描述變數之間的關係,為什麼研究函式很重要呢?還要從數學的起源說起。
各個古文明都掌握一些數學的知識,數學的起源也很多很多,但是一般認為,現代數學直承古希臘。古希臘的很多數學家同時又是哲學家,例如畢達哥拉斯,芝諾,這樣數學和哲學有很深的親緣關係。古希臘的最有生命力的哲學觀點就是世界是變化的(德謨克利特的河流)和亞里斯多德的因果觀念,這兩個觀點一直被人廣泛接受。
前面談到,函式描述變數之間的關係,淺顯的理解就是一個變了,另一個或者幾個怎麼變,這樣,用函式刻畫複雜多變的世界就是順理成章的了,數學成為理論和現實世界的一道橋樑。
微積分理論可以粗略的分為幾個部分,微分學研究函式的一般性質,積分學解決微分的逆運算,微分方程(包括偏微分方程和積分方程)把函式和代數結合起來,級數和積分變換解決數值計算問題,另外還研究一些特殊函式,這些函式在實踐中有很重要的作用。這些理論都能解決什麼問題呢?下面先舉兩個實踐中的例子。
舉個最簡單的例子,火力發電廠的冷卻塔的外形為什麼要做成彎曲的,而不是像煙囪一樣直上直下的?其中的原因就是冷卻塔體積大,自重非常大,如果直上直下,那麼最下面的建築材料將承受巨大的壓力,以至於承受不了(我們知道,地球上的山峰最高只能達到3萬米,否則最下面的岩石都要融化了)。現在,把冷卻塔的邊緣做成雙曲線的性狀,正好能夠讓每一截面的壓力相等,這樣,冷卻塔就能做的很大了。
為什麼會是雙曲線,用於微積分理論5分鐘之內就能夠解決。
我相信讀者在看這篇文章的時候是在使用電腦,計算機內部指令需要通過硬體表達,把訊號轉換為能夠讓我們感知的資訊。前幾天這裡有個**演算法的帖子,很有代表性。windows系統帶了一個計算器,可以進行一些簡單的計算,比如算對數。
計算機是計算是基於加法的,我們常說的多少億次實際上就是指加法運算。那麼,怎麼把計算對數轉換為加法呢?實際上就運用微積分的級數理論,可以把對數函式轉換為一系列乘法和加法運算。
這個兩個例子牽扯的數學知識並不太多,但是已經顯示出微積分非常大的力量。實際上,可以這麼說,基本上現代科學如果沒有微積分,就不能再稱之為科學,這就是高等數學的作用。
16樓:夢之楠
4.1微積分推動了數學自身的發展
微積分和解析幾何創立之後,就開闢了數學發展的新紀元。通過微積分,數學可以描述運動的事物,描述一種過程的變化。可以說,微積分的創立改變了整個數學世界。
微積分的創立,極大的推動了數學自身的發展,同時又進一步開創了諸多新的數學分支,例如:微分方程、無窮級數、離散數學等等。此外,數學原有的一些分支,例如:
函式與幾何等等,也進一步發展成為複變函式和解析幾何,這些數學分支的建立無一不是運用了微積分的方法。在微積分創設後這三百年中,數學獲得了前所未有的發展。
4.2微積分推動了其它學科的發展
微積分的建立推動了其它學科的發展,數學本身就是其它學科發展的理論基礎,尤其是天文學、力學、光學、電學、熱學等自然學科的發展。微積分成了物理學的基本語言,而且,許多物理學問題要依靠微積分來尋求解答。微積分還對天文學和天體力學的發展起到了奠定基礎的作用,牛頓應用微積分學及微分方程為了從萬有引力定律匯出了開普勒行星運動三大定律。
其它學科諸如化學、生物學、地理學、現代資訊科技等這些學科同樣離不開微積分的使用,可以說這些學科的發展很大程度上時由於微積分的運用,這些學科運用微積分的方法推導演繹出各種新的公式、定理等,因此微積分的創立為其他學科的發展做出了巨大的貢獻。
4.3微積分推動人類文明的發展
微積分由於是研究變化規律的方法,因此只要與變化、運動有關的研究都要與微積分有關,都需要運用微積分的基本原理和方法,從這個意義上說,微積分的創立對人類社會的進步和人類物質文明的發展都有極大的推動作用。現在,在一些金融、經濟等社會科學領域,也經常運用微積分的原理,來研究整個社會、整個經濟的巨集觀和微觀變化。此外,微積分還廣泛的運用於各種工程技術上面,從而直接的影響著人類的物質生活,例如:
核電工程的建設,火箭、飛船的發射等等,這些人類文明的重大活動都與微積分的運用有著密切的關係。
結語 綜上所述,微積分的創立在數學發展史上是一個重要轉折,它不但成為高等數學發展的基礎,也成為了眾多相關科學發展的數學分析工具。毋庸置疑,隨著現代科學的發展和各學科間的相互交融,微積分與數學仍將會進一步豐富和發展,人們也要進一步將微積分和數學的理論應用於實踐,從而為人
學習微積分有什麼用處,學習高等數學有什麼用處?
例如,微積分在投資決策中的運用 初等數學在經濟生活中的應用十分廣泛,例如在投資決策中,如果以均勻流的存款方式,也就是將資金以流水一樣的方式定期不斷存入銀行中,那麼計算1年後的中價值就可以通過定積分的方式。例如某企業一次性投資某專案2億元,並據頂一年後建成,獲得經濟回報。如果忽略資金的時間價值,那麼5...
學習微積分的感受,高等數學中微積分的學習感悟
初級的微積分喊簡單,但是往後學到什麼全積分,多從積分就惱火了 剛接受有點難,理解了很簡單,其實都是學習的老一套。高等數學中微積分的學習感悟 5 微分相當於求導,積分就是對導數求原函式。不同的是有定積分和不定積分。如果是不定積分所求的原函式就得在後面加一個常數c,因為常數的導數是零。微積分就是高等數學...
學習微積分和離散數學有什麼用,為什麼基礎學的
我以一個過來的人講義講我的看法,我今年已經生上了研究生,我的大學專業就內是數學容,是純理論數學和計算機沒有多大的關係,首先微積分是整個數學的基礎,如果微積分學不好,只要和數學沾邊的學科 你都學習非常困難 其次離散數學和計算機有些關係,我曾經學習很多的程式設計,用到很多的離散數學的邏輯分析,尤其是編譯...