指數函式與指數型函式有區別嗎,指數函式與指數型函式有什麼區別

2021-03-11 06:53:16 字數 5622 閱讀 7623

1樓:念秀愛龔己

兩個有區別copy,

指數函式是f(x)=a^x(a>0且a不等於1)注意:指數函式自變數一定是x,係數一定是1比如f(x)=a^(x+1)

f(x)=2a^x都不是指數函

數,這些都叫做指數型函式,意思就是形式像指數函式但是不是指數函式,可以和反比例函式模型類比,接下來還有對數型函式

附帶說說,f(x+1)=a^(x+1)是指數函式,自己好好想想吧

2樓:匿名使用者

指數函式的一般形式是y=a^x(a大於零,x為不等於零的任意實數),而指數型函式的一般形式是y=ka^f(x)+m,當k=1,m=0,且f(x)=x時,指數型函式才是指數函式

3樓:匿名使用者

形如y=a^x(a>0且a≠1)的函式是指數函式指數型函式是y=ka^x(a>0且a≠1)他們的區別就是有無常數係數k而已 謝謝採納~~5星好評~~

4樓:匿名使用者

我也是剛剛學完指數函式,相信你也是高一的學生吧指數函式,並且的係數只能為1指數型函式,就是比指數函式多了一個係數

5樓:匿名使用者

有區別bai

指數函式的一般形式為y=a^x(a>0且≠du1) (x∈r). 它是

zhi初等函式中dao的一種。它是定義在實數域上的單**、下凸、無上界答的可微正值函式。指數型函式意思就是形式像指數函式但是不是指數函式,可以和反比例函式模型類比。

指數函式是f(x)=a^x(a>0且a不等於1)注意:指數函式自變數一定是x,係數一定是1 比如f(x)=a^(x+1) f(x)=2a^x都不是指數函式,這些都叫做指數型函式。

6樓:匿名使用者

有區別 指數型函式只是帶指數那一類的 指數型函式更為複雜點

指數函式與指數型函式有什麼區別?

7樓:匿名使用者

兩個有區別,

指數函式是f(x)=a^x(a>0且a不等於1)注意:指數函式自變數一定是x,係數一定是1比如f(x)=a^(x+1) f(x)=2a^x都不是指數函式,這些都叫做指數型函式,意思就是形式像指數函式但是不是指數函式,可以和反比例函式模型類比,接下來還有對數型函式

附帶說說,f(x+1)=a^(x+1)是指數函式,自己好好想想吧

指數函式型模型與指數型函式有什麼區別?

8樓:匿名使用者

以《指數函式》來說:

它有嚴格的定義。那就是形如

y=a的x次冪 的函式,叫做指數函式。(a的條件咱們不說了)。

它有一個特性:

x=0, y=1,

也就是影象必須過點(0,1).

如果是這樣的函式:

y=c乘以a的x次冪。

只能叫《指數函式型別的函式》——《指數函式型的函式》。

因為它過點(0,c).不一定是(0,1).

我們研究指數函式的目的,就是利用指數函式的性質,解決《指數函式型》的函式題目。

這就是區別。

9樓:小夢麟

一個是長得像指數函式,一個是指數函式。

指數函式與指數型函式性質一樣嗎

10樓:匿名使用者

意思就是形式像指數函式但不是指數函式,可以和反比例函式模型類比。

指數函式是f(x)=a^x(a>0且a不等於1)注意:指數函式自變數一定是x,係數一定是1

比如f(x)=a^(x+1) f(x)=2a^x都不是指數函式,因為它們並不完全具有指數函式的性質,這些都叫做指數型函式。

11樓:乾映寒尾熙

形如y=a^x(a>0且a≠1)的函式是指數函式指數型函式是y=ka^x(a>0且a≠1)他們的區別就是有無常數係數k而已

謝謝採納~~5星好評~~

指數型函式還能稱作指數函式嗎?

12樓:匿名使用者

意思就抄

是形式像指數函式但襲不是指數函式,可以和反比例函式模型類比。

指數函式是f(x)=a^x(a>0且a不等於1)注意:指數函式自變數一定是x,係數一定是1

比如f(x)=a^(x+1) f(x)=2a^x都不是指數函式,因為它們並不完全具有指數函式的性質,這些都叫做指數型函式。

形如y=ka^x的函式為指數型函式

指數函式冪函式的區別

13樓:達豐

1、自變數x的位置不同。

指數函式,自變數x在指數的位置上,y=a^x(a>0,a 不等於 1)。

冪函式,自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。

2、性質不同。

指數函式性質:

當 a>1 時,函式是遞增函式,且 y>0;

當 00。

冪函式性質:

正值性質:

當a>0時,冪函式有下列性質:

a、影象都經過點(1,1)(0,0);

b、函式的影象在區間[0,+∞)上是增函式;

c、在第一象限內,a>1時,導數值逐漸增大;a=1時,導數為常數;0負值性質:

當a<0時,冪函式有下列性質:

a、影象都通過點(1,1);

b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。

c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。

零值性質:

當a=0時,冪函式有下列性質:

a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。

3、值域不同。

指數函式的值域是(0,+∞),冪函式的值域是r。

14樓:匿名使用者

區別:這兩個完全是不同的函式。

1、定義不同,從兩者的數學表示式來看,兩者的未知量x的位置剛好互換。

指數函式:自變數x在指數的位置上,y=a^x(a>0,a不等於1),當a>1時,函式是遞增函式,且y>0;當00.

冪函式:自變數x在底數的位置上,y=x^a(a不等於1)。a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。

2、影象不同:指數函式的圖象是單調的,始終在

一、二象限,經過(0,1)點;冪函式需要具體問題具體分析。

3、性質不同

冪函式性質:1、正值性質即當α>0時,冪函式y=xα有下列性質:a、影象都經過點(1,1)(0,0);b、函式的影象在區間[0,+∞)上是增函式;c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;

2、負值性質即當α<0時,冪函式y=xα有下列性質:a、影象都通過點(1,1);b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。

利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。

3、零值性質當α=0時,冪函式y=xa有下列性質:y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。

指數函式性質:指數函式的定義域為r,這裡的前提是a大於0且不等於1。對於a不大於0的情況,則必然使得函式的定義域不連續,因此我們不予考慮,同時a等於0函式無意義一般也不考慮。

擴充套件資料

冪的比較常用方法:1、做差(商)法:a-b大於0即a大於b a-b等於0即a=b a-b小於0即a小於b 步驟:

做差—變形—定號—下結論 ;a\b大於1即a大於b a\b等於1即a等於b a/b小於1即a小於b (a,b大於0)2、函式單調性法;3、中間值法:要比較a與b的大小,先找一箇中間值c,再比較a與c、b與c的大小,由不等式的傳遞性得到a與b之間的大小。

15樓:home暮光青檸

區別:1、

自變數①指數函式的自變數為指數。

②冪函式的自變數為底數。

2、性質

①指數函式過定點(0,1),值域為(0,+∞),定義域為r(即實數)。

②冪函式過定點(1,1)通常包括正比例函式,二次函式,三次函式,反比例函式和指數函式。(即只討論a=1,2,3,-1,二分之一)

3、表示式

①指數函式:y=a的x方 (a>1時為增函式,0<a<1時為減函式,a=1時為常數函式)

②冪函式;y=x的a方(a=1,2,3,-1,二分之一),其中y=x²是偶函式(即a=2),其它是奇函式

區別方法

觀察函式的自變數 x 所在的位置,x 在指數位置就是指數函式,x 在底數位置就是冪函式。

16樓:雍寒縱飛捷

①冪函式:y=x^μ(μ≠0,μ為任意實數)定義域:μ為正整數時為(-∞,+∞),μ為負整數時是(-∞,0)∪(0,+∞);μ=(α為整數),當α是奇數時為(-∞,+∞),當α是偶數時為(0,+∞);μ=p/q,p,q互素,作為的複合函式進行討論。

略圖如圖2、圖3。

②指數函式:y=a^x(a>0,a≠1),定義成為(-∞,+∞),值域為(0,+∞),a>0時是嚴格單調增加的函式(即當x2>x1時,),0<a<1時是嚴格單減函式。對任何a,影象均過點(0,1),注意y=ax和y=()x的圖形關於y軸對稱。

如圖4。

③對數函式:y=logax(a>0),稱a為底,定義域為(0,+∞),值域為(-∞,+∞)。a>1時是嚴格單調增加的,0<a<1時是嚴格單減的。

不論a為何值,對數函式的圖形均過點(1,0),對數函式與指數函式互為反函式。如圖5。

以10為底的對數稱為常用對數,簡記為lgx。在科學技術中普遍使用的是以e為底的對數,即自然對數,記作lnx。

17樓:零午風尚

^冪函式與指數函式的區別:指數函式:自變數 x 在指數的位置上,y=a^x(a>0,a 不等於 1)性質:

當 a>1 時,函式是遞增函式,且 y>0;

當 00. 2.

函式影象:

冪函式:自變數 x 在底數的位置上,y=x^a(a 不等於 1). a 不等於 1,但可正可負,取不同的值,影象及性質是不一樣的。

高中數學裡面,冪函式主要要掌握 a=-1、2、3、1/2 時的影象即可。其中當 a=2 時, 函式是過原點的二次函式。 其他 a 值的影象可自己通過描點法畫下並瞭解下基本影象的走向即可。

性質: 根據圖象,冪函式性質歸納如下:

(1)所有的冪函式在(0,+∞)都有定義,並且圖象都過點 (1,1); (2)當 a>0 時,冪函式的圖象通過原點,並且在區間[0,+ ∞)上是增函式. 特別地,當 a>1 時,冪函式的圖象下凸;當 0(3)當 a<0 時,冪函式的圖象在區間(0,+∞)上是減函式.在第一象限內, 當 x 從右邊趨向原點時,圖象在 y 軸右方無限地逼近 y 軸正半軸,當 x 趨 於+∞時,圖象在軸 x 上方無限地逼近軸 x 正半軸。 指出:此時 y=x0=1;定義域為(-∞,0)∪(0,+∞),特別強調, 當 x 為任何非零實數時,函式的值均為 1,影象是從點(0,1)出發,平行於 x 軸的兩條射線,但點(0,1)要除外。

如何區別指數函式和冪函式冪函式和指數函式有什麼區別

1 計算方法不同 指數函式 自變數x在指數的位置上,y a x a 0,a不等於1 當a 1時,函式是遞增函式,且y 0 當00.冪函式 自變數x在底數的位置上,y x a a不等於1 a不等於1,但可正可負,取不同的值,影象及性質是不一樣的。2 性質不同 冪函式性質 1 正值性質 當 0時,冪函式...

指數與指數函式的區別與聯絡是什麼

指數函式 形如y a x,a 0且a 1的函式如上式,x叫做a的指數。兩者之間的關係 指數函式的自變數是指數。區別 前者是函式名稱,後者是運算基本概念 如因數 指數函式與指數型函式有什麼區別?兩個有區別,指數函式是f x a x a 0且a不等於1 注意 指數函式自變數一定是x,係數一定是1比如f ...

數學題指數函式與對數函式,數學指數函式與對數函式,求解題思路

定義域會球的話 現在是求複合函式的單調區間 因為外函式是以0.2為底的對數函式,是單調遞減的,所以題目中要求求整個函式的單調遞增區間,根據 複合函式單調性同增異減 的規律,也就是要你求出內涵數的單調遞減區間 內涵數是二次函式,本來題目是兩根視你畫成了頂點式所以對稱軸是x 1 2,開口向上 看二次項係...