在空間直角座標系中,如何求向量的法向量?如何求平面的法向量

2021-03-27 08:35:13 字數 6313 閱讀 8233

1樓:匿名使用者

沒有定義一個向量的法向量

只有兩個向量的垂直定義

兩個向量垂直,則它們對應分量的乘積之和等於0如 (x1,x2,x3) 與 (2,-6,-10) 垂直 <=> 2x1-6x2-10x3 = 0

平面的法向量即與兩個已知向量都垂直的向量, 有無窮多, 解方程即得

2樓:匿名使用者

3、在平面內找出兩個不共線的向量,記為a=(a1,a2, a3) b=(b1,b2,b3)

4、根據法向量的定義建立方程組①n*a=0 ②n*b=0

5、解方程組,取其中一組解即可。

空間向量中怎麼求法向量?

3樓:匿名使用者

高中數學空間向量之--平面法向量的求法及其應用

一、 平面的法向量

1、定義:如果

a,那麼向量

a叫做平面的法向量。平面的法向量共有兩大類(從方向上分),無數條。

2、平面法向量的求法

方法一(內積法):在給定的空間直角座標系中,設平面的法向量(,,1)nxy[或(,1,)nxz

,或(1,,)nyz],在平面內任找兩個不共線的向量,ab

。由n,得0na且0nb,由此得到關於,xy的方程組,解此方程組即可得到n

。第一種是最常規的做法,列兩個方程,然後取值求解。

第二種是建立空間直角座標系,然後再求需要求法向量的平面的平面方程,然後可以直接看出。

第三種是利用叉乘法,知道平面內相交的兩條邊的空間向量,就可以利用公式直接套。

法向量是空間解析幾何的一個概念,垂直於平面的直線所表示的向量為該平面的法向量。由於空間內有無數個直線垂直於已知平面,因此一個平面都存在無數個法向量(包括兩個單位法向量)。

4樓:刀陽粟思嘉

解:求平面的法向量的一般步驟是:

①在平面內任取兩個不共線的向量(基底向量),並用座標表示;

②設這個平面的法向量為(x,y,z);

③寫出②所設法向量與①的兩個向量垂直的座標表示(三元方程組,兩個方程);

④給x或y或z任取一個特殊值,帶入③中的方程組,變成二元方程組;

⑤若對法向量的模a有要求,再解關於λ的方程λ|(x,y,z)|=a.

在數學中,「平面的法向量」要怎麼求?

5樓:子不語望長安

平面法向量的具體步驟:(待定係數法)

1、建立恰當的直角座標系

2、設平面法向量n=(x,y,z)

3、在平面內找出兩個不共線的向量,記為a=(a1,a2, a3) b=(b1,b2,b3)

4、根據法向量的定義建立方程組①n·a=0 ②n·b=05、解方程組,取其中一組解即可。

依據:①由於空間內有無數個直線垂直於已知平面,因此一個平面都存在無數個法向量(包括兩個單位法向量)。

②如果一條直線與平面內兩條相交直線都垂直,那麼這條直線與這個平面垂直。

空間向量中,如何求平面的法向量

6樓:匿名使用者

已知一個平面的兩個法向量a=(x1,y1,z1),b=(x2,y2,z2) 其中x1,x2,y1,y2,z1,z2均為已知

設平面法向量為n=(x,y,z)

n為平面的法向量則

n*a=0 x*x1+y*y1+z*z1=0n*b=0 x*x2+y*y2+z*z2=0兩個方程,三個未知數x,y,z

故設出其中一個,例如設x=1(不能為0),從而求出y,z的值,即可得到平面的一個法向量,因為平面的法向量有無數個,且模可以任意,故可以這樣假設

7樓:匿名使用者

ax+by+cz+d=0 ,三元一次方程就是一個平面的一般方程。

一個平面方程的法向量就是三元一次方程中x,y,z的係陣列合向量,即:向量n=就是ax+by+cz+d=0的法向量.也可以寫成:

法向量n=a向量i+b向量j+c向量k,向量i,向量j,向量k分別是x,y,z的單位向量。

以x+2y+z=4為例,它的法向量是 向量n=(1,2,1)是平面x+2y+z-4=0的法向量。

一些特例,若a=0,向量n=(0,b.c)垂直於x軸,它所代表的平面by+cz+d=0則平行於x軸。同理,ax+cz+d=0平行於y軸,法向量n=(a,0,c)垂直於y軸;ax+by+d=0平行於z軸,法向量n=(a,b,0)垂直於z軸。

當d=0時,平面過原點。

建立空間直角座標系,平面法向量怎麼求 大概思路

8樓:taxi青山綠水蘇

沒有定義一個向量的法向量 只有兩個向量的垂直定義 兩個向量垂直,則它們對應分量的乘積之和等於0 如 (x1,x2,x3) 與 (2,-6,-10) 垂直 2x1-6x2-10x3 = 0 平面的法向量即與兩個已知向量都垂直的向量, 有無窮多, 解方程即得

9樓:匿名使用者

求出二面角兩個半面的法向量,其夾角即為二面角或二面角的互補角,至於是哪一個角則需根據圖來判斷

已知平面的方程,怎麼求平面的法向量?

10樓:特特拉姆咯哦

變換方程為一般式ax+by+cz+d=0,平面的法向量為(a,b,c)。

證明:設平面上任意兩點p(x1,y1,z1),q(x2,y2,z2)∴ 滿足方程:ax1+by1+cz1+d=0,ax2+by2+cz2+d=0

∴ pq的向量為(x2-x1,y2-y1,z2-z1),該向量滿足a(x2-x1)+b(y2-y1)+c(z2-z1)=0

∴ 向量pq⊥向量(a,b,c)

∴ 平面上任意直線都垂直於向量(a,b,c)∴ 向量(a,b,c)垂直於該平面

∴ 平面的法向量為(a,b,c)

11樓:你轉身的笑

這個你可以在數學書上可以找得到

高中數學問題,請問,在空間直角座標系中,一個平面的法向量是垂直於該平面的任意向量,就行嗎?還是必須

12樓:匿名使用者

任意一個垂直於該平面的向量就可以了,至於向量的長度,無所謂。

因為平面方程是個等式,用不同長度的法向量算出來的平面方程,只是在等式兩個乘以一個常數而已,方程不改變。

就好比ax+by+cz+d=0

和2ax+2by+2cz+2d=0

是同一個平面的方程一樣。

空間向量怎樣過定點求平面法向量

13樓:小苒

(43) 平面法向量的求法及其應用

嵩明縣一中 吳學偉

引言:本節課介紹平面法向量的三種求法,並對平面法向量在高中立體幾何中的應用作歸納和總結。其中重點介紹外積法求平面法向量的方法,因為此方法比內積法更具有優越性,特別是在求二面角的平面角方面。

此方法的引入,將對高考立體幾何中求空間角、求空間距離、證明垂直、證明平行等問題的解答變得快速而準確,那麼每年高考中那道12分的立體幾何題將會變得更加輕鬆。

一、 平面的法向量

1、定義:如果 ,那麼向量 叫做平面 的法向量。平面 的法向量共有兩大類(從方向上分),無數條。

2、平面法向量的求法

方法一(內積法):在給定的空間直角座標系中,設平面 的法向量 [或 ,或 ],在平面 內任找兩個不共線的向量 。由 ,得 且 ,由此得到關於 的方程組,解此方程組即可得到 。

方法二:任何一個 的一次次方程的圖形是平面;反之,任何一個平面的方程是 的一次方程。 ,稱為平面的一般方程。

其法向量 ;若平面與3個座標軸的交點為 ,如圖所示,則平面方程為: ,稱此方程為平面的截距式方程,把它化為一般式即可求出它的法向量。

方法三(外積法): 設 , 為空間中兩個不平行的非零向量,其外積 為一長度等於 ,(θ為 , 兩者交角,且 ),而與 , 皆垂直的向量。通常我們採取「右手定則」,也就是右手四指由 的方向轉為 的方向時,大拇指所指的方向規定為 的方向, 。

(注:1、二階行列式: ;2、適合右手定則。)

例1、 已知, ,

試求(1): (2):

key: (1) ;

例2、如圖1-1,在稜長為2的正方體 中,

求平面aef的一個法向量 。

二、 平面法向量的應用

1、 求空間角

(1)、求線面角:如圖2-1,設 是平面 的法向量,

ab是平面 的一條斜線, ,則ab與平面

所成的角為:

圖2-1-1:

圖2-1-2:

(2)、求面面角:設向量 , 分別是平面 、 的法向量,則二面角 的平面角為:

(圖2-2);

(圖2-3)

兩個平面的法向量方向選取合適,可使法向量夾角就等於二面角的平面角。約定,在圖2-2中, 的方向對平面 而言向外, 的方向對平面 而言向內;在圖2-3中, 的方向對平面 而言向內, 的方向對平面 而言向內。我們只要用兩個向量的向量積(簡稱「外積」,滿足「右手定則」)使得兩個半平面的法向量一個向內一個向外,則這兩個半平面的法向量的夾角即為二面角 的平面角。

2、 求空間距離

(1)、異面直線之間距離:

方法指導:如圖2-4,①作直線a、b的方向向量 、 ,

求a、b的法向量 ,即此異面直線a、b的公垂線的方向向量;

②在直線a、b上各取一點a、b,作向量 ;

③求向量 在 上的射影d,則異面直線a、b間的距離為

,其中(2)、點到平面的距離:

方法指導:如圖2-5,若點b為平面α外一點,點a

為平面α內任一點,平面的法向量為 ,則點p到

平面α的距離公式為

(3)、直線與平面間的距離:

方法指導:如圖2-6,直線 與平面 之間的距離:

,其中 。 是平面 的法向量

(4)、平面與平面間的距離:

方法指導:如圖2-7,兩平行平面 之間的距離:

,其中 。 是平面 、 的法向量。

3、 證明

(1)、證明線面垂直:在圖2-8中, 向是平面 的法向量, 是直線a的方向向量,證明平面的法向量與直線所在向量共線( )。

(2)、證明線面平行:在圖2-9中, 向是平面 的法向量, 是直線a的方向向量,證明平面的法向量與直線所在向量垂直( )。

(3)、證明面面垂直:在圖2-10中, 是平面 的法向量, 是平面 的法向量,證明兩平面的法向量垂直( )

(4)、證明面面平行:在圖2-11中, 向是平面 的法向量, 是平面 的法向量,證明兩平面的法向量共線( )。

三、高考真題新解

1、(2005全國i,18)(本大題滿分12分)

已知如圖3-1,四稜錐p-abcd的底面為直角梯形,ab‖dc, 底面abcd,且pa=ad=dc= ab=1,m是pb的中點

(ⅰ)證明:面pad⊥面pcd;

(ⅱ)求ac與pb所成的角;

(ⅲ)求面amc與面bmc所成二面角的大小

解:以a點為原點,以分別以ad,ab,ap為x軸,y軸,z軸,建立空間直角座標系a-xyz如圖所示.

, ,設平面pad的法向量為

, ,設平面pcd的法向量為

, ,即平面pad 平面pcd。

, ,, ,設平在amc的法向量為 .

又 ,設平面pcd的法向量為 .

.面amc與面bmc所成二面角的大小為 .

2、(2023年雲南省第一次統測19題) (本題滿分12分)

如圖3-2,在長方體abcd-a1b1c1d1中,

已知ab=aa1=a,bc= a,m是ad的中點。

(ⅰ)求證:ad‖平面a1bc;

(ⅱ)求證:平面a1mc⊥平面a1bd1;

(ⅲ)求點a到平面a1mc的距離。

解:以d點為原點,分別以da,dc,dd1為x軸,y軸,z軸,建立空間直角座標系d-xyz如圖所示.

, ,設平面a1bc的法向量為

又 , , ,即ad//平面a1bc.

, ,設平面a1mc的法向量為: ,

又 , ,設平面a1bd1的法向量為: ,

, ,即平面a1mc 平面a1bd1.

設點a到平面a1mc的距離為d,

是平面a1mc的法向量,

又 , a點到平面a1mc的距離為: .

四、 用空間向量解決立體幾何的「三步曲」

(1)、建立空間直角座標系(利用現有三條兩兩垂直的直線,注意已有的正、直條件,相關幾何知識的綜合運用,建立右手系),用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題;(化為向量問題)

(2)、通過向量運算,研究點、直線、平面之間的位置關係以及它們之間距離和夾角等問題;(進行向量運算)

(3)、把向量的運算結果「翻譯」成相應的幾何意義。(回到圖形問題)

求在中畫直角座標系的操作方法,求在word中畫直角座標系的操作方法

基本步驟如下 1.執行 繪圖 繪圖網格 在螢幕上顯示網格 注意資料設定 確定 命令,使頁版 利用word 的繪製圖形功能可以簡單實現 1.啟動word 2.插入 繪製新圖形 3.選擇螢幕下方繪圖工具欄中的直線工具 4.按住鍵盤,可以繪製水平或垂直的直線。如何在word中畫直角座標系?如何在word插...

在直角座標系xOy中,以座標原點O為圓心的圓與直線x

本題滿分14分 1 依題設,圓o的半徑r等於原點內o到直線x 3y 4 的距離,容 即r 4 1 3 2 3分 得圓o的方程為x2 y2 4.6分 2 由題意,可設直線mn的方程為2x y m 0.8分 則圓心o到直線mn的距離d m 5 10分 由垂徑分弦定理得 m2 5 3 2 2 2 即m 5...

在平面直角座標系中,圓心O的座標為 2,3 的圓滿足下列條件時,分別寫出其半徑r的取值範圍

答 r 2時有一個交點 2 r 3時有兩個交點 r 3時有三個交點 r 3時有四個交點。2010?西寧 如圖,已知在直角座標系中,半徑為2的圓的圓心座標為 3,3 當該圓向上平移 個單 設圓的半徑為r,圓心到直線的距離d,要使圓與x軸相切,必須d r 此時d 3,圓向上平移1或5個單位時,它與x軸相...