將下列複數轉化為三角表示式和指數表示式。這兩題怎麼做啊,大神們只要教我一題就行咯,謝謝哈

2021-03-27 09:08:52 字數 5576 閱讀 9786

1樓:巴山蜀水

解:(4)1-cosφ

+isinφ=2[sin(φ/2)]^2+i2sin(φ/2)cos(φ/2)=2sin(φ/2)[sin(φ/2)+icos(φ/2)]=2sin(φ/2)[cos(π/2-φ/2)+isin(π/2-φ/2)]=2sin(φ/2)e^[(π/2-φ/2)i]。

(5)(cos5φ+isin5φ)^2=[e^(i5φ)]^2=e^(i10φ);(cos3φ-isin3φ)^3=[e^(-i3φ)]^3=e^(-i9φ),∴原式=e^(i10φ)/e^(-i9φ)=e^(i19φ)。供參考啊。

將複數化為三角表示式與指數表示式,用mathematica怎麼實現?

2樓:匿名使用者

你可以這樣做, 但是這麼簡單的題目, 你最好自己算

這道題'怎麼把複數化為三角表示式,麻煩詳細一點,十分感謝

3樓:

第一眼沒有看出結果,所以解1用的通用方法,做出結果後發現有竅門,所以在做解2

方圓寸苑三圓數學問題(複數三角式)壓縮的word檔案一天有效

將複數化為三角表示式和指數表示式

4樓:射手小流沙

將複數化為三角表示式和指數表示式是:複數z=a+bi有三角表示式z=rcosθ+irsinθ,可以化為指數表示式z=r*exp(iθ)。exp()為自然對數的底e的指數函式。

即:exp(iθ)=cosθ+isinθ。 證明可以通過冪級數或對函式兩端積分得到,是複變函式的基本公式。

一、三角函式課程介紹:三角函式是以角度為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。

常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等。三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。

二、三角函式相關公式:

1、兩角和公式

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

2、倍角公式

tan2a = 2tana/(1-tan² a)

sin2a=2sina•cosa

cos2a = cos^2 a--sin² a

=2cos² a—1

=1—2sin^2 a

3、三倍角公式

sin3a = 3sina-4(sina)³;

cos3a = 4(cosa)³ -3cosa

tan3a = tan a • tan(π/3+a)• tan(π/3-a)

4、半形公式

sin(a/2) = √

cos(a/2) = √

tan(a/2) = √

cot(a/2) = √ ?

tan(a/2) = (1--cosa)/sina=sina/(1+cosa)

5、和差化積

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tana+tanb=sin(a+b)/cosacosb

6、積化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

7、誘導公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tga=tana = sina/cosa

8、萬能公式

sin(a) = [2tan(a/2)] /

cos(a) = /

tan(a) = [2tan(a/2)]/

5樓:

^解:(4)1-cosφ

+isinφ=2[sin(φ/2)]^2+i2sin(φ/2)cos(φ/2)=2sin(φ/2)[sin(φ/2)+icos(φ/2)]=2sin(φ/2)[cos(π/2-φ/2)+isin(π/2-φ/2)]=2sin(φ/2)e^[(π/2-φ/2)i]。 (5)(cos5φ+isin5φ)^2=[e^(i5φ)]^2=e^(i10φ);(cos3φ-isin3φ)^3=[e^(-i3φ)]^3=e^(-...

6樓:

看來你不知道尤拉公式啊re^iθ=r(cosθ+isinθ),記住吧,很多地方可以用到

7樓:

複數z=a+bi有三角表示式z=rcosθ+irsinθ,可以化為指數表示式z=r*exp(iθ)。exp()為自然對數的底e的指數函式。即:

exp(iθ)=cosθ+isinθ。 證明可以通過冪級數或對函式兩端積分得到,是複變函式的基本公式。

8樓:

(1)-6+6jr=√[(-6)^2+6^2]=6√2三角式:

-6+6j=6√2·(-√2/2+√2/2·j)=6√2[cos(3π/4)+jsin(3π/4)]極座標形式:(r,θ)=(6√2,3π/4)指數式:-6+6j=6√2·e^(3πj/4)(2)3-3√3jr=√[3^2+(-3√3)^2]=6三角式:

3-3√3j=6·(1/2-√3/2·j)=6√2[cos(5π/3)+jsin(5π/3)]極...

將複數z=1-i化為三角形式及指數形式,求大神講解

9樓:匿名使用者

z=√2(√2/2-√2/2i)=√2cos(a+π/4)

將複數化為三角表示式和指數表示式是什麼?

10樓:射手小流沙

將複數化為三角表示式和指數表示式是:複數z=a+bi有三角表示式z=rcosθ+irsinθ,可以化為指數表示式z=r*exp(iθ)。exp()為自然對數的底e的指數函式。

即:exp(iθ)=cosθ+isinθ。 證明可以通過冪級數或對函式兩端積分得到,是複變函式的基本公式。

一、三角函式課程介紹:三角函式是以角度為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。

常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等。三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。

二、三角函式相關公式:

1、兩角和公式

sin(a+b) = sinacosb+cosasinb

sin(a-b) = sinacosb-cosasinb

cos(a+b) = cosacosb-sinasinb

cos(a-b) = cosacosb+sinasinb

tan(a+b) = (tana+tanb)/(1-tanatanb)

tan(a-b) = (tana-tanb)/(1+tanatanb)

cot(a+b) = (cotacotb-1)/(cotb+cota)

cot(a-b) = (cotacotb+1)/(cotb-cota)

2、倍角公式

tan2a = 2tana/(1-tan² a)

sin2a=2sina•cosa

cos2a = cos^2 a--sin² a

=2cos² a—1

=1—2sin^2 a

3、三倍角公式

sin3a = 3sina-4(sina)³;

cos3a = 4(cosa)³ -3cosa

tan3a = tan a • tan(π/3+a)• tan(π/3-a)

4、半形公式

sin(a/2) = √

cos(a/2) = √

tan(a/2) = √

cot(a/2) = √ ?

tan(a/2) = (1--cosa)/sina=sina/(1+cosa)

5、和差化積

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tana+tanb=sin(a+b)/cosacosb

6、積化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

7、誘導公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tga=tana = sina/cosa

8、萬能公式

sin(a) = [2tan(a/2)] /

cos(a) = /

tan(a) = [2tan(a/2)]/

下列複數形式中,是三角形式的是,把下列複數寫成一般形式或者三角形式

三角形式是 z r cos a i sin a 其中 r 0,所以只有c是正確的 選擇ccos2 isin2 把下列複數寫成一般形式或者三角形式?3 3i的膜是根號下3的平方加 3的平方等於3 2,輔角為 3除以3等於 1,因為 3,3 是第四象限角,1是 45 sin第四象限為負,cos第四象限為...

複數的三角式複數的三角形式裡的i是什麼

a bi r co isinm rr aa bb 用三角形式計算有時候更方便 比如兩個複數相乘 z1 z2 r1 co isinm r2 cosn isinn r1r2 cos m n isin m n 任何一個複數都可以表示為r cosa isina 的形式,其中a叫做該複數的輻角,即該複數在複平...

電影《鐵三角》表達的是什麼,新出的電影鐵三角是什麼含義呢?

那個代表他們心中的幻想和慾望,最後不停車,就是不再被金錢迷惑而走正途 新出的電影鐵三角是什麼含義呢?出於種種機緣,鐵三角 看了兩遍,一遍是完整版,一遍算是公映版。當我不給片商面子。由徐克 林嶺東 杜琪峰這三位香港影壇巨 將 非匠 共冶一爐,又各有火花的奇崛之作 鐵三角 實在是太適合看完整版。只有在完...