1樓:巴山蜀水
解:(4)1-cosφ
+isinφ=2[sin(φ/2)]^2+i2sin(φ/2)cos(φ/2)=2sin(φ/2)[sin(φ/2)+icos(φ/2)]=2sin(φ/2)[cos(π/2-φ/2)+isin(π/2-φ/2)]=2sin(φ/2)e^[(π/2-φ/2)i]。
(5)(cos5φ+isin5φ)^2=[e^(i5φ)]^2=e^(i10φ);(cos3φ-isin3φ)^3=[e^(-i3φ)]^3=e^(-i9φ),∴原式=e^(i10φ)/e^(-i9φ)=e^(i19φ)。供參考啊。
將複數化為三角表示式與指數表示式,用mathematica怎麼實現?
2樓:匿名使用者
你可以這樣做, 但是這麼簡單的題目, 你最好自己算
這道題'怎麼把複數化為三角表示式,麻煩詳細一點,十分感謝
3樓:
第一眼沒有看出結果,所以解1用的通用方法,做出結果後發現有竅門,所以在做解2
方圓寸苑三圓數學問題(複數三角式)壓縮的word檔案一天有效
將複數化為三角表示式和指數表示式
4樓:射手小流沙
將複數化為三角表示式和指數表示式是:複數z=a+bi有三角表示式z=rcosθ+irsinθ,可以化為指數表示式z=r*exp(iθ)。exp()為自然對數的底e的指數函式。
即:exp(iθ)=cosθ+isinθ。 證明可以通過冪級數或對函式兩端積分得到,是複變函式的基本公式。
一、三角函式課程介紹:三角函式是以角度為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。
常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等。三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。
二、三角函式相關公式:
1、兩角和公式
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
2、倍角公式
tan2a = 2tana/(1-tan² a)
sin2a=2sina•cosa
cos2a = cos^2 a--sin² a
=2cos² a—1
=1—2sin^2 a
3、三倍角公式
sin3a = 3sina-4(sina)³;
cos3a = 4(cosa)³ -3cosa
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
4、半形公式
sin(a/2) = √
cos(a/2) = √
tan(a/2) = √
cot(a/2) = √ ?
tan(a/2) = (1--cosa)/sina=sina/(1+cosa)
5、和差化積
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tana+tanb=sin(a+b)/cosacosb
6、積化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
7、誘導公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tga=tana = sina/cosa
8、萬能公式
sin(a) = [2tan(a/2)] /
cos(a) = /
tan(a) = [2tan(a/2)]/
5樓:
^解:(4)1-cosφ
+isinφ=2[sin(φ/2)]^2+i2sin(φ/2)cos(φ/2)=2sin(φ/2)[sin(φ/2)+icos(φ/2)]=2sin(φ/2)[cos(π/2-φ/2)+isin(π/2-φ/2)]=2sin(φ/2)e^[(π/2-φ/2)i]。 (5)(cos5φ+isin5φ)^2=[e^(i5φ)]^2=e^(i10φ);(cos3φ-isin3φ)^3=[e^(-i3φ)]^3=e^(-...
6樓:
看來你不知道尤拉公式啊re^iθ=r(cosθ+isinθ),記住吧,很多地方可以用到
7樓:
複數z=a+bi有三角表示式z=rcosθ+irsinθ,可以化為指數表示式z=r*exp(iθ)。exp()為自然對數的底e的指數函式。即:
exp(iθ)=cosθ+isinθ。 證明可以通過冪級數或對函式兩端積分得到,是複變函式的基本公式。
8樓:
(1)-6+6jr=√[(-6)^2+6^2]=6√2三角式:
-6+6j=6√2·(-√2/2+√2/2·j)=6√2[cos(3π/4)+jsin(3π/4)]極座標形式:(r,θ)=(6√2,3π/4)指數式:-6+6j=6√2·e^(3πj/4)(2)3-3√3jr=√[3^2+(-3√3)^2]=6三角式:
3-3√3j=6·(1/2-√3/2·j)=6√2[cos(5π/3)+jsin(5π/3)]極...
將複數z=1-i化為三角形式及指數形式,求大神講解
9樓:匿名使用者
z=√2(√2/2-√2/2i)=√2cos(a+π/4)
將複數化為三角表示式和指數表示式是什麼?
10樓:射手小流沙
將複數化為三角表示式和指數表示式是:複數z=a+bi有三角表示式z=rcosθ+irsinθ,可以化為指數表示式z=r*exp(iθ)。exp()為自然對數的底e的指數函式。
即:exp(iθ)=cosθ+isinθ。 證明可以通過冪級數或對函式兩端積分得到,是複變函式的基本公式。
一、三角函式課程介紹:三角函式是以角度為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。
常見的三角函式包括正弦函式、餘弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等。三角函式一般用於計算三角形中未知長度的邊和未知的角度,在導航、工程學以及物理學方面都有廣泛的用途。
二、三角函式相關公式:
1、兩角和公式
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
2、倍角公式
tan2a = 2tana/(1-tan² a)
sin2a=2sina•cosa
cos2a = cos^2 a--sin² a
=2cos² a—1
=1—2sin^2 a
3、三倍角公式
sin3a = 3sina-4(sina)³;
cos3a = 4(cosa)³ -3cosa
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
4、半形公式
sin(a/2) = √
cos(a/2) = √
tan(a/2) = √
cot(a/2) = √ ?
tan(a/2) = (1--cosa)/sina=sina/(1+cosa)
5、和差化積
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tana+tanb=sin(a+b)/cosacosb
6、積化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
7、誘導公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tga=tana = sina/cosa
8、萬能公式
sin(a) = [2tan(a/2)] /
cos(a) = /
tan(a) = [2tan(a/2)]/
下列複數形式中,是三角形式的是,把下列複數寫成一般形式或者三角形式
三角形式是 z r cos a i sin a 其中 r 0,所以只有c是正確的 選擇ccos2 isin2 把下列複數寫成一般形式或者三角形式?3 3i的膜是根號下3的平方加 3的平方等於3 2,輔角為 3除以3等於 1,因為 3,3 是第四象限角,1是 45 sin第四象限為負,cos第四象限為...
複數的三角式複數的三角形式裡的i是什麼
a bi r co isinm rr aa bb 用三角形式計算有時候更方便 比如兩個複數相乘 z1 z2 r1 co isinm r2 cosn isinn r1r2 cos m n isin m n 任何一個複數都可以表示為r cosa isina 的形式,其中a叫做該複數的輻角,即該複數在複平...
電影《鐵三角》表達的是什麼,新出的電影鐵三角是什麼含義呢?
那個代表他們心中的幻想和慾望,最後不停車,就是不再被金錢迷惑而走正途 新出的電影鐵三角是什麼含義呢?出於種種機緣,鐵三角 看了兩遍,一遍是完整版,一遍算是公映版。當我不給片商面子。由徐克 林嶺東 杜琪峰這三位香港影壇巨 將 非匠 共冶一爐,又各有火花的奇崛之作 鐵三角 實在是太適合看完整版。只有在完...