1樓:555小武子
說句實話微分和導數本質上應該是沒有區別吧。dy/dx=f』(x)
微分學研究函式的導數與微分及其在函式研究中的應用。建立微分學所用的分析方法對整個數學的發展產生了深遠的影響,運用到了許多數學分支中,滲透到自然科學與技術科學等極其眾多的領域。微分學的作用是在自然科學中用數學來不僅僅表明狀態,並且也表明過程(運動)。
微分學的基本思想在於考慮函式在小範圍內是否可能用線性函式或多項式函式來任意近似表示。直觀上看來,對於能夠用線性函式任意近似表示的函式,其圖形上任意微小的一段都近似於一段直線。在這樣的曲線上,任何一點處都存在一條惟一確定的直線──該點處的「切線」。
它在該點處相當小的範圍內,可以與曲線密合得難以區分。這種近似,使對複雜函式的研究在區域性上得到簡化。微分學的基礎是建立在實數、函式、極限、連續性等一組基本概念之上的。
2樓:匿名使用者
它們的本質區別在二維座標系中並不明顯,但就本質來說,微分是求無窮小,導數是求發展趨勢,在三維座標中反應最為明顯,三維座標中的微分是包含著面元的無窮小,而導數則是,平面中曲線的導數,即曲線的發展趨勢,在三維座標中,可導不一定可微,但可微就一定可導~具體的可以參看大學數學教材~~~~
3樓:匿名使用者
微分就是導數在加dx 如y=4x,y的導數是y'=4,而微分是dy=4dx;希望能幫助到你
導數的本質?本質!!最基礎本質
4樓:匿名使用者
導數的本質?本質!!最基礎本質是甚麼?!
導數的本質完全融在它的定義之中,也就是定
義中抽象的數學表示式本身就是它最基礎的本質:
若 y是x的一元函式、連續、可微:y=y(x)那麼極限:
lim(△x->0) [y(x+△x)-y(x)] /△x= lim(△x->0) △y/△x = dy/dx-----------(1)
被定義為y(x) 的導數。要想直觀地理解導數的本質,你就把(1)中數學符號在不同的領域中具體化,你就可以發現導數在不同領域中的意義有不同的解釋!
5樓:十月的讀者
導數的本質實質上就是一個法則,一個對自變數x施加的法則,x經過被施加的法則後即可求出函式在 x處切線的斜率
也就是說這個法則用於求函式在x處切線斜率
至於這個法則是怎麼求解本質上則是極限思想
還可以理解為
導數是一個函式在x這一點附近的變化率,變化的一個趨勢。
導數本質是個數,微分本質是數嗎
6樓:大燕慕容倩倩
導數是函式的區域性性質。一個函式在某一點的導數描述了這個函式在這一點附近的變化率。
所以,從某種意義上來說,導數是反映函式變化率的函式,是函式,不是數。
通常把自變數x的增量 δx稱為自變數的微分,記作dx,即dx = δx。於是函式y = f(x)的微分又可記作dy = f'(x)dx。函式的微分與自變數的微分之商等於該函式的導數。
所以,微分也是反映函式線性化的函式,是函式,不是數。
7樓:垂暮之年痛快
微分函式和求導函式可以看成是互逆的過程。 就像加法和減法。 2+8=10 但反過來, 10=1+9=2+8=3+7=。。。。=9+1 所以 逆運算的微積分較難一些
導數和微分的區別?
8樓:月下者
導數是函式影象在某一點處的斜率,也就是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。
導數是函式影象在某一點處的斜率,也就是縱座標變化率和橫座標變化率的比值。微分是指函式影象在某一點處的切線在橫座標取得δx以後,縱座標取得的增量。
擴充套件資料
微分在數學中的定義:由函式b=f(a),得到a、b兩個數集,在a中當dx靠近自己時,函式在dx處的極限叫作函式在dx處的微分,微分的中心思想是無窮分割。微分是函式改變數的線性主要部分。
微積分的基本概念之一。
設函式y = f(x)在x的鄰域內有定義,x及x + δx在此區間內。
如果函式的增量δy = f(x + δx) - f(x)可表示為 δy = aδx + o(δx)(其中a是不依賴於δx的常數),而o(δx)是比δx高階的無窮小(注:o讀作奧密克戎,希臘字母)那麼稱函式f(x)在點x是可微的,且aδx稱作函式在點x相應於因變數增量δy的微分,記作dy,即dy = aδx。
函式的微分是函式增量的主要部分,且是δx的線性函式,故說函式的微分是函式增量的線性主部(△x→0)。
參考資料
9樓:匿名使用者
導數和微分的區別一個是比值、一個是增量。
1、導數是函式影象在某一點處的斜率,也就是縱座標增量(δy)和橫座標增量(δx)在δx-->0時的比值。
2、微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。
擴充套件資料:
微分應用:
1、我們知道,曲線上一點的法線和那一點的切線互相垂直,微分可以求出切線的斜率,自然也可以求出法線的斜率。
2、假設函式y=f(x)的圖象為曲線,且曲線上有一點(x1,y1),那麼根據切線斜率的求法,就可以得出該點切線的斜率m:m=dy/dx在(x1,y1)的值,所以該切線的方程式為:y-y1=m(x-x1)。
由於法線與切線互相垂直,法線的斜率為-1/m且它的方程式為:y-y1=(-1/m)(x-x1)
3、增函式與減函式
微分是一個鑑別函式(在指定定義域內)為增函式或減函式的有效方法。
鑑別方法:dy/dx與0進行比較,dy/dx大於0時,說明dx增加為正值時,dy增加為正值,所以函式為增函式;dy/dx小於0時,說明dx增加為正值時,dy增加為負值,所以函式為減函式。
4、變化的速率
微分在日常生活中的應用,就是求出非線性變化中某一時間點特定指標的變化。
在t=3時,我們想知道此時水加入的速率,於是我們算出dv/dt=2/(t+1)^2,代入t=3後得出dv/dt=1/8。
所以我們可以得出在加水開始3秒時,水箱裡的水的體積以每秒1/8升的速率增加。
10樓:demon陌
1 對於函式f(x),求導f'(x)=df(x)/dx,微分就是df(x),微分和導數的關係為df(x)=f'(x)dx
2 求導又名微商,計算公式:dy/dx,而微分就是dy,所以進行微分運算就是讓你進行求導運算然後在結果後面加上一個無窮小量dx而已。當然這僅限於一元微積分,多元微積分另當別論。
11樓:陳新霽粘錦
樓上的,問題是導數和微分的區別,你怎麼說到微分和積分的區別了。
對於一元函式y=f(x)而言,導數和微分沒什麼差別。導數的幾何意義是曲線y=f(x)的瞬時變化率,即切線斜率。微分是指函式因變數的增量和自變數增量的比值△y=△f(x+△x)-f(x),這裡可以把自變數x看成是關於自身的函式y=x,那麼△x=△y,所以微分另一種說法叫微商,dy/dx是兩個變數的比值。
一般來說,dy/dx=y'。
對於多元函式,如二元函式z=f(x,y)而言,導數變成了關於某個變數的偏導數。此時,微分符號dz/dx是個整體,不能拆開理解。而且,有個重要區別,可導不一定可微。
即可導是可微的必要非充分條件。但是,有定理,若偏導數連續則函式可微。具體看全微分與偏導數有關章節。
theend。
12樓:西域牛仔王
自變數 x 的差分是 δx,函式 y 的差分是 δy,
δx=x2-x1,δy=y2-y1=f(x2)-f(x1)。
當 δx 足夠小時(趨於 0),δy 的值近似等於 f '(x)*δx ,
就把這個定義成 y 的微分,記作 dy ,因此 dy = f '(x)*δx ≈ δy ,
由於對函式 y=x 來說,dy=dx=δx,所以上式就是 dy = f '(x)*dx 。
可以看出,f '(x) = dy/dx ,也就是說,導數其實就是微商。
以前學導數時,只是把 dy/dx 看作是導數的符號,而現在是一種運算了。
13樓:有嗨咩
對一個函式積分和對它微分,這兩個運算互為逆運算。
求原函式的過程是不定積分運算版;求導的過程權是微分運算。
一個函式的微分與它的導數也略有區別,微分是函式的線性增量(變化),而導數是函式的變化率(也就是函式值變化/自變數變化)。
14樓:匿名使用者
其實從幾何幾何意義上來理解就很簡單了,導數是函式影象在某一點處的斜率,也就是縱座標變化率和橫座標變化率的比值。微分是指函式影象在某一點處的切線在橫座標取得δx以後,縱座標取得的增量。
15樓:呵呵
導數描繪的是將來的
變換率 在 微分可以理解為將來增量的主體 這句話的前提足回夠細分的情況下(或者答
說 微分是導數的實現) 並且要進行說明的是導數和微分都是對函式的某一點進行討論 很多人認為是對函式的討論吧 著名的泰勒公式 就是通過 某一個點 和它的將來的變換率 變換率的變化率................ 從而推出整個函式面貌
所謂求導 就是通過損失一部分資訊的情況下 來獲得函式將來的的變換情況 這裡的一部分資訊 你可以理解為初始值 例如 f=x^2 求導 f`(x)=2x 2x進行積分得到的原函式 x^2+c 這裡的c就是損失的初始值 也就是f(0)
16樓:匿名使用者
更準來確的說應該是,
導數源是函式影象在某bai一點處的斜du
率,也就是縱坐zhi
標增量(δy)和橫坐dao標增量(δx)在δx-->0時的比值。
微分是指函式影象在某一點處的切線在橫座標取得增量δx以後,縱座標取得的增量,一般表示為dy。
17樓:匿名使用者
導數--求函式在某一個點的切線斜率
微分--求函式在某一個點的增長率
18樓:匿名使用者
冰塊融化的快慢程度用到導數,冰塊某一時刻體積的縮小量用到微分,導數是變化率,微分是個數
19樓:煙怡書景福
在一元函式情形
二者是等價的,可導一定可以微分,且dy=f'(x)dx
但是在多元函式時,可微比可導要強,可導不一定可微
微分與導數有什麼區別
20樓:鍾全婁卯
對於一元函式y=f(x)而言,導數和微分沒什麼差別。導數的幾何意義是曲線y=f(x)的瞬時變化率,即切線斜率。微分是指函式因變數的增量和自變數增量的比值△y=△f(x+△x)-f(x),這裡可以把自變數x看成是關於自身的函式y=x,那麼△x=△y,所以微分另一種說法叫微商,dy/dx是兩個變數的比值。
一般來說,dy/dx=y'。
對於多元函式,如二元函式z=f(x,y)而言,導數變成了關於某個變數的偏導數。此時,微分符號dz/dx是個整體,不能拆開理解。而且,有個重要區別,可導不一定可微。
即可導是可微的必要非充分條件。但是,有定理,若偏導數連續則函式可微。具體看全微分與偏導數有關章節。
導數與微分割槽別,導數和微分的區別?
1 一元函式,可導就是可微,沒有本質區別,完全是一個意思的兩種表述 可導強調的是曲線的斜率 變數的牽連變化率 可微強調的是可以分割性 連續性 光滑性。dx dy 可微性 dy dx 可導性 dy dy dx dx,在工程應用中,變成 y dy dx x 這就是可導 可微之間的關係 可導 可微 dif...
微分和導數是什麼關係微分與導數有什麼區別
這兩者是不同的,粗略來看很多人會認為這兩者是一樣的,但是其數學含義是不同的,而且嚴格說兩者不是相等的關係。從數學符號的意義上來說,dy與 y是不同的,dx與 x也是不同的。一般地,代表做 差 分 運算之後的結果,是一個具體精確的表達。而d 代表做 微分 運算後的結果,裡面包含有取某種極限之後的結果,...
數學題導數與微分的本質區別
1 一元函式,可導就是可微,沒有本質區別,完全是一個意思的兩種表述 可導強調的是曲線的斜率 變數的牽連變化率 可微強調的是可以分割性 連續性 光滑性。dx dy 可微性 dy dx 可導性 dy dy dx dx,在工程應用中,變成 y dy dx x 這就是可導 可微之間的關係 可導 可微 dif...