1樓:匿名使用者
你必須得至第三階,因為分母為x的4次方,但是你分解的因式裡有x的1次方,你只到x的2次方,其實「尺度」不夠,你得至x的3次方才行;
求問麥克勞林公式在求極限時的具體使用,基礎點,要有例題,謝謝!
用泰勒公式求極限 要到多少項
2樓:在蘊秀帖唱
展開到多少項是因問題而異的,比如求x趨於0時(e^x-1)/x的極限,只需把e^x到第一項(x項)即可,為什麼呢?因為e^x=1
+x+o(x),後面的o(x)是比x還小的項,所以(e^x-1)/x=1
+o(x)/x,後一項趨於0,故極限為1。
如果現在求的是(cosx-1)/x^2,則需要到x^2項,cosx=1
-x^2/2
+o(x^2),道理和上面一樣。總之原則就是一個,最後餘項的那部分運算下來不能影響「大局」,是可以忽略的部分,這樣就可以了。
3樓:匿名使用者
用泰勒的方法求極限,到多少項是要通過試的,你必須能把最低階的項精確得到後,才可以停止。
的項數少了,會出現前面幾項全都消掉的尷尬局面。
為了避免這種情況發生,要多幾項,直到能把最低階的項能精確算出來,這時就可以不了。
希望我的回答可以幫到你~
4樓:是你找到了我
泰勒公式求極限,具要看題設,有的題3項即能作答,而有的題則要求展開到n項。
若函式f(x)在包含x0的某個閉區間[a,b]上具有n階導數,且在開區間(a,b)上具有(n+1)階導數,則對閉區間[a,b]上任意一點x,成立下式:
其中,表示f(x)的n階導數,等號後的多項式稱為函式f(x)在x0處的泰勒式,剩餘的rn(x)是泰勒公式的餘項,是(x-x0)n的高階無窮小。
擴充套件資料:
常用函式的泰勒公式:
泰勒公式的應用:
1、冪級數的求導和積分可以逐項進行,因此求和函式相對比較容易。
2、一個解析函式可被延伸為一個定義在複平面上的一個開片上的解析函式,並使得複分析這種手法可行。
3、泰勒級數可以用來近似計算函式的值,並估計誤差。
4、證明不等式。
5、求待定式的極限。
5樓:會飛的小兔子
用泰勒公式求極限要展開到最低階的項精確得到後最後的數值就可以。泰勒公式可以用這些導數值做係數構建一個多項式來近似函式在這一點的鄰域中的值,這個多項式稱為泰勒多項式(taylor polynomial)。
泰勒公式還給出了餘項即這個多項式和實際的函式值之間的偏差。泰勒公式得名於英國數學家布魯克·泰勒。泰勒公式是將一個在x=x0處具有n階導數的函式f(x)利用關於(x-x0)的n次多項式來逼近函式的方法。
擴充套件資料泰勒公式定理
1、冪級數的求導和積分可以逐項進行,因此求和函式相對比較容易。
2、泰勒級數可以用來近似計算函式的值,並估計誤差。
3、求待定式的極限。
4、證明不等式。
5、一個解析函式可被延伸為一個定義在複平面上的一個開片上的解析函式,並使得複分析這種手法可行。
6樓:你怕是傻哦
一般到第三項就可以。
在實際應用中,泰勒公式需要截斷,只取有限項,一個函式的有限項的泰勒級數叫做泰勒式。泰勒公式的餘項可以用於估算這種近似的誤差。
泰勒公式是將一個在x=x0處具有n階導數的函式f利用關於(x-x0)的n次多項式來逼近函式的方法。
擴充套件資料
泰勒公式的發展過程
希臘哲學家芝諾在考慮利用無窮級數求和來得到有限結果的問題時,得出不可能的結論-芝諾悖論,這些悖論中最著名的兩個是「阿喀琉斯追烏龜」和「飛矢不動」。
後來,亞里士多德對芝諾悖論在哲學上進行了反駁,直到德謨克利特以及後來的阿基米德進行研究,此部分數學內容才得到解決。阿基米德應用窮舉法使得一個無窮級數能夠被逐步的細分,得到了有限的結果。
14世紀,瑪達瓦發現了一些特殊函式,包括正弦、餘弦、正切、反正切等三角函式的泰勒級數。
17世紀,詹姆斯·格雷果裡同樣繼續著這方面的研究,並且發表了若干麥克勞林級數。直到2023年,英國牛頓學派最優秀代表人物之一的數學家泰勒提出了一個通用的方法,這就是為人們所熟知的泰勒級數;愛丁堡大學的科林·麥克勞林教授發現了泰勒級數的特例,稱為麥克勞林級數。
7樓:11111小刀
像第二.第三題這種有分子和分母的,一般是至分子分母的階數相同,第一題很明顯是兩項相減那麼就是前後兩項階數相等。。。。。。怎麼的話一般都是用一些基礎已知的公式,你們應該有教的吧,,比如第一題的(1+x)^n,第二題的cos x等等。。。。
所有的求極限都可以用泰勒公式嗎?
8樓:匿名使用者
答:1、當然不是,泰勒公式是有其充分條件的:f(x)在包含x0的某個閉區間[a,b]上具有n階導數,且在開區間(a,b)上具有(n+1)階導數;
2、實際上能成泰勒公式的函式大部分都是初等函式,而由初等函式構成的大多數極限是可以成泰勒公式的;
3、而由非初等函式構成的極限,是不能成泰勒公式的,比如最簡單的,分段函式,積分函式等
麥克勞林公式在求極限時的具體使用有哪些?
麥克勞林公式怎麼從泰勒公式轉化,麥克勞林公式和泰勒公式有什麼區別
泰勒公式的餘項 可以寫成以下幾種不同的形式 1 佩亞諾版 peano 餘項 這裡只需要n階導數存在權 2 施勒米爾希 羅什 schlomilch roche 餘項 其中 0,1 p為任意正實數。注意到p n 1與p 1分別對應拉格朗日餘項與柯西餘項 1 3 拉格朗日 lagrange 餘項 其中 0...
不知道怎麼用泰勒公式,麥克勞林公式
泰勒公式 f x f x0 f x0 x x0 0 x x0 在點x0用f x0 f x0 x x0 逼近函式f x 但是近似程度不夠 就是要用更高次去逼近函式 所以對比上面的式子 就有 pn x a0 a1 x x0 a2 x x0 2 an x x0 n 這裡an pn n x0 n 麥克勞林公...
求幾階泰勒公式或麥克勞林公式的這個幾階怎麼看哪,指的是什麼
函式用泰勒公式或邁克勞林公式就是用一個多項式來近似的代替原來的函式,用幾次多項式來代替函式就說成幾階。當然這種代替是有差別的,所以要加上餘項才能和原來的函式相等。至於到多少階,這個要看具體的問題來決定,也就是根據具體問題看到多少階能滿足要求。是否滿足要求這就是餘項來決定。按你的理解,對餘弦函式,四階...