已知三角形三點座標A x1,y1 ,B x2,y2 ,C x3,y3 ,如何用這三點座標表示該三角形的五心

2021-04-30 07:44:54 字數 4866 閱讀 6889

1樓:匿名使用者

已知任意三角形abc三點座標分別為a(x1,y1),b(x2,y2),c(x3,y3)

求: 1.該三角形重心座標

2.該三角形內心座標(三條角平分線交點)

3.該三角形垂心座標(三條高交點)

4.改三角形外心座標(三條邊垂直平分線交點)

上述四題請簡述過程,用含有x1,x2,x3,y1,y2,y3的代數式表示

重心g(x4;y4);

x4=(x1+x2+x3)/3;

y4=(y1+y2+y3)/3;

外心w(x5;y5);

根據外心到各頂點的距離相等:

ag=bg;

ag=cg;

即: sqrt[(x1 - x5)^2 + (y1 - y5)^2] == sqrt[(x2 - x5)^2 + (y2 - y5)^2],

sqrt[(x1 - x5)^2 + (y1 - y5)^2] == sqrt[(x3 - x5)^2 + (y3 - y5)^2]

解得:x5 = (x2^2 y1 - x3^2 y1 - x1^2 y2 + x3^2 y2 - y1^2 y2 + y1 y2^2 + x1^2 y3 - x2^2 y3 + y1^2 y3 - y2^2 y3 - y1 y3^2 + y2 y3^2)/(2 (x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3));

y5 = -(-x1^2 x2 + x1 x2^2 + x1^2 x3 - x2^2 x3 - x1 x3^2 + x2 x3^2 - x2 y1^2 + x3 y1^2 + x1 y2^2 - x3 y2^2 - x1 y3^2 + x2 y3^2)/(2 (x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3));

內心n(x6;y6);

根據內心到各邊的距離相等:

先求內心到各邊垂線垂足與頂點的距離;

1/2 (sqrt[(x1 - x2)^2 + (y1 - y2)^2] + sqrt[(x1 - x3)^2 + (y1 - y3)^2] - sqrt[(x2 - x3)^2 + (y2 - y3)^2]);

1/2 (sqrt[(x1 - x2)^2 + (y1 - y2)^2] - sqrt[(x1 - x3)^2 + (y1 - y3)^2] + sqrt[(x2 - x3)^2 + (y2 - y3)^2]);

1/2 (-sqrt[(x1 - x2)^2 + (y1 - y2)^2] + sqrt[(x1 - x3)^2 + (y1 - y3)^2] + sqrt[(x2 - x3)^2 + (y2 - y3)^2]);

計算內心到個頂點的距離;根據勾股定理計算內心到各邊的距離,根據距離相等列方程:

(x1 - x6)^2 - 1/4 (sqrt[(x1 - x2)^2 + (y1 - y2)^2] + sqrt[(x1 - x3)^2 + (y1 - y3)^2] - sqrt[(x2 - x3)^2 + (y2 - y3)^2])^2 + (y1 - y6)^2 == (x2 - x6)^2 - 1/4 (sqrt[(x1 - x2)^2 + (y1 - y2)^2] - sqrt[(x1 - x3)^2 + (y1 - y3)^2] + sqrt[(x2 - x3)^2 + (y2 - y3)^2])^2 + (y2 - y6)^2,

(x1 - x6)^2 - 1/4 (sqrt[(x1 - x2)^2 + (y1 - y2)^2] + sqrt[(x1 - x3)^2 + (y1 - y3)^2] - sqrt[(x2 - x3)^2 + (y2 - y3)^2])^2 + (y1 - y6)^2 == (x3 - x6)^2 - 1/4 (-sqrt[(x1 - x2)^2 + (y1 - y2)^2] + sqrt[(x1 - x3)^2 + (y1 - y3)^2] + sqrt[(x2 - x3)^2 + (y2 - y3)^2])^2 + (y3 - y6)^2

解得:x6 = (x2^2 y1 - x3^2 y1 - x1^2 y2 + x3^2 y2 - y1^2 y2 + y1 y2^2 + x1^2 y3 - x2^2 y3 + y1^2 y3 - y2^2 y3 - y1 y3^2 + y2 y3^2 + y2 sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] - sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] y3 sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] - y1 sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2] + sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] y3 sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2] + y1 sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2] - y2 sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2])/(2 (x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3));

y6 = -(-x1^2 x2 + x1 x2^2 + x1^2 x3 - x2^2 x3 - x1 x3^2 + x2 x3^2 - x2 y1^2 + x3 y1^2 + x1 y2^2 - x3 y2^2 - x1 y3^2 + x2 y3^2 + x2 sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] - x3 sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] - x1 sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2] + x3 sqrt[x1^2 - 2 x1 x2 + x2^2 + y1^2 - 2 y1 y2 + y2^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2] + x1 sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2] - x2 sqrt[x1^2 - 2 x1 x3 + x3^2 + y1^2 - 2 y1 y3 + y3^2] sqrt[x2^2 - 2 x2 x3 + x3^2 + y2^2 - 2 y2 y3 + y3^2])/(2 (x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3));

垂心h(x7;y7);

分別做高線: ah⊥bc;bh⊥ac;

(y1 - y7)/(x1 - x7) (y2 - y3)/(x2 - x3) == -1,

(y2 - y7)/(x2 - x7) (y1 - y3)/(x1 - x3) == -1

解得:x7 = -(x1 x2 y1 - x1 x3 y1 - x1 x2 y2 + x2 x3 y2 + y1^2 y2 - y1 y2^2 + x1 x3 y3 - x2 x3 y3 - y1^2 y3 + y2^2 y3 + y1 y3^2 - y2 y3^2)/(-x2 y1 + x3 y1 + x1 y2 - x3 y2 - x1 y3 + x2 y3);

y7 = -(x1^2 x2 - x1 x2^2 - x1^2 x3 + x2^2 x3 + x1 x3^2 - x2 x3^2 + x1 y1 y2 - x2 y1 y2 - x1 y1 y3 + x3 y1 y3 + x2 y2 y3 - x3 y2 y3)/(x2 y1 - x3 y1 - x1 y2 + x3 y2 + x1 y3 - x2 y3);

2樓:匿名使用者

首先求三邊的長

a=√[(x2-x3)²+(y2-y3)²],b=√[(x1-x3)²+(y1-y3)²],c=√[(x1-x2)²+(y1-y2)²]

然後設ka= -a²+b²+c²,kb= -b²+a²+c²,kc= -c²+a²+b²

重心座標

x重=(x1+x2+x3)/3

y重=(y1+y2+y3)/3

內心座標

x內=(ax1+bx2+cx3)/(a+b+c)

y內=(ay1+by2+cy3)/(a+b+c)

垂心座標

x垂=(x1/ka+x2/kb+x3/kc)/(1/ka+1/kb+1/kc)

y垂=(y1/ka+y2/kb+y3/kc)/(1/ka+1/kb+1/kc)

外心座標

x外=(a²kax1+b²kbx2+c²kcx3)/(a²ka+b²kb+c²kc)

y外=(a²kay1+b²kby2+c²kcy3)/(a²ka+b²kb+c²kc)

旁心座標

x旁1=(-ax1+bx2+cx3)/(-a+b+c)

y旁1=(-ay1+by2+cy3)/(-a+b+c)

x旁2=(ax1-bx2+cx3)/(a-b+c)

y旁2=(ay1-by2+cy3)/(a-b+c)

x旁3=(ax1+bx2-cx3)/(a+b-c)

y旁3=(ay1+by2-cy3)/(a+b-c)

已知三角形ABC的平面直觀圖三角形A1B1C1的邊長是a的正三角形,那麼原三角形ABC的面積為

直觀圖的為等邊三角形,面積為 3 4 a 2 因為直觀圖面積是原面積的 2 4 所以原來面積為 6 2 a 已知 abc的平面直觀圖 a b c 是邊長為a的正三角形,求原 abc的面積 直觀圖 a b c 是邊長為a的正三角形,故面積為 34a,而原圖和直觀圖面積之間的關係s 直觀圖s原圖 24,...

matlab已知三角形頂點座標,如何確定三角形內的點座標的

如果說是範圍的bai話應該是滿足du 與三角形三條邊直zhi線方程有關的不等式組dao專a x1,y1 b x2,y2 c x3,y3 組成三角形屬想知道某點 x,y 是否在三角型裡面 可以用matlab函式 in on inpolygon x,y,x1 x2 x3 y1 y2 y3 返回的in和o...

已知在三角形ABC和三角形A撇B撇C撇中,AB A撇B撇,A

延長ad至e使 de ad,有三角形adc與bde全等,即ac bd。同理,延長a撇d撇使d撇e撇相專等,可得 b撇e撇 a撇c撇。由已知得ab a撇b撇,屬ad a撇d撇,所以三角形abe全等a撇b撇e撇,得角bae 角b撇a撇e撇。再由三角形bad全等三角形b撇a撇d撇得bd b撇d撇。又bd ...