什麼是反證法

2021-05-29 21:00:05 字數 3261 閱讀 2176

1樓:靠名真tm難起

反證法是間接論證的方法之一。是通過斷定與論題相矛盾的判斷(即反論題)的虛假來確立論題的真實性的論證方法。

反證法的論證過程如下:首先提出論題:然後設定反論題,並依據推理規則進行推演,證明反論題的虛假;最後根據排中律,既然反論題為假,原論題便是真的。

在進行反證中,只有與論題相矛盾的判斷才能作為反論題,論題的反對判斷是不能作為反論題的,因為具有反對關係的兩個判斷可以同時為假。反證法中的重要環節是確定反論題的虛假,常常要使用歸謬法。

2樓:假面

反證法是間接論證的方法之一。亦稱「逆證」。是通過斷定與論題相矛盾的判斷(即反論題)的虛假來確立論題的真實性的論證方法。

反證法的論證過程如下:首先提出論題:然後設定反論題,並依據推理規則進行推演,證明反論題的虛假;最後根據排中律,既然反論題為假,原論題便是真的。

在進行反證中,只有與論題相矛盾的判斷才能作為反論題,論題的反對判斷是不能作為反論題的,因為具有反對關係的兩個判斷可以同時為假。反證法中的重要環節是確定反論題的虛假,常常要使用歸謬法。

反證法是一種有效的解釋方法,特別是在進行正面的直接論證或反駁比較困難時,用反證法會收到更好的效果。

擴充套件資料:

反證法的邏輯原理是逆否命題和原命題的真假性相同。

實際的操作過程還用到了另一個原理,即:

原命題和原命題的否定是對立的存在:原命題為真,則原命題的否定為假;原命題為假,則原命題的否定為真。

先對原命題的結論進行否定,即寫出原命題的否定:p且¬q。

從結論的反面出發,推出矛盾,即命題:p且¬q 為假(即存在矛盾)。

從而該命題的否定為真。

再利用原命題和逆否命題的真假性一致,即原命題:p⇒q為真。

誤區:否命題與命題的否定是兩個不同的概念。

命題的否定只針對原命題的結論進行否定。而否命題同時否定條件和結論:

原命題:p⇒q;

否命題:¬p⇒¬q;

逆否命題:¬q⇒¬p;

命題的否定:p且¬q。

原命題與否命題的真假性沒有必然聯絡,但原命題和原命題的否定卻是對立的存在,一個為真另一個必然為假。

證明一個集合有無窮多個元素:

① 用反證法。即證明如果它是有限的,則會存在矛盾;

② 與另外一個無窮集合建立對映,這時加進來的已知無窮集合作為引理出現。

證明質數有無窮多個,歐幾里得的證明就是反證法。

再如,證明不存在最大的自然數。如果從正面去證明的話,相當於列舉自然數,然而我們在有限的步驟中完成,因此直接證法行不通。於是,利用排中律轉化為:

對於所有自然數n,存在一個自然數m,使得m>n。這幾乎是顯然的。

3樓:

就是從這個事物的反面去進行推理論證。

4樓:匿名使用者

反證法是間接論證的方法之一。是通過斷定與論題相矛盾bai的判斷(即反論題)的虛假來確立論題的真實性的論證方法。

反證法的論證過程如下:首先提出論題:然後設定反論題,並依據推理規則進行推演,證明反論題的虛假;最後根據排中律,既然反論題為假,原論題便是真的。

在進行反證中,只有與論題相矛盾的判斷才能作為反論題,論題的反對判斷是不能作為反論題的,因為具有反對關係的兩個判斷可以同時為假。反證法中的重要環節是確定反論題的虛假,常常要使用歸謬法。

5樓:在洋瀾湖跳民族舞的紅柱石

貢獻者胡啟洲詳情

反證法是間接論證的方法之一。亦稱「逆證」。是通過斷定與論題相矛盾的判斷(即反論題)的虛假來確立論題的真實性的論證方法。

反證法的論證過程如下:首先提出論題:然後設定反論題,並依據推理規則進行推演,證明反論題的虛假;最後根據排中律,既然反論題為假,原論題便是真的。

在進行反證中,只有與論題相矛盾的判斷才能作為反論題,論題的反對判斷是不能作為反論題的,因為具有反對關係的兩個判斷可以同時為假。反證法中的重要環節是確定反論題的虛假,常常要使用歸謬法。反證法是一種有效的解釋方法,特別是在進行正面的直接論證或反駁比較困難時,用反證法會收到更好的效果。[1]

什麼是反證法?

6樓:手機使用者

反證法是屬於「間接證明法」一類,是從反面的角度思考問題的證明方法,即:肯定題設而否定結論,從而匯出矛盾推理而得。法國數學家阿達瑪(hadamard)對反證法的實質作過概括:

「若肯定定理的假設而否定其結論,就會導致矛盾」。具體地講,反證法就是從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經證明為正確的命題等相矛,矛盾的原因是假設不成立,所以肯定了命題的結論,從而使命題獲得了證明。

反證法所依據的是邏輯思維規律中的「矛盾律」和「排中律」。在同一思維過程中,兩個互相矛盾的判斷不能同時都為真,至少有一個是假的,這就是邏輯思維中的「矛盾律」;兩個互相矛盾的判斷不能同時都假,簡單地說「a或者非a」,這就是邏輯思維中的「排中律」。反證法在其證明過程中,得到矛盾的判斷,根據「矛盾律」,這些矛盾的判斷不能同時為真,必有一假,而已知條件、已知公理、定理、法則或者已經證明為正確的命題都是真的,所以「否定的結論」必為假。

再根據「排中律」,結論與「否定的結論」這一對立的互相否定的判斷不能同時為假,必有一真,於是我們得到原結論必為真。所以反證法是以邏輯思維的基本規律和理論為依據的,反證法是可信的。

反證法的證題模式可以簡要的概括我為「否定→推理→否定」。即從否定結論開始,經過正確無誤的推理導致邏輯矛盾,達到新的否定,可以認為反證法的基本思想就是「否定之否定」。應用反證法證明的主要三步是:

否定結論 → 推匯出矛盾 → 結論成立。實施的具體步驟是:

第一步,反設:作出與求證結論相反的假設;

第二步,歸謬:將反設作為條件,並由此通過一系列的正確推理匯出矛盾;

第三步,結論:說明反設不成立,從而肯定原命題成立。

在應用反證法證題時,一定要用到「反設」進行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那麼只要將這種情況駁倒了就可以,這種反證法又叫「歸謬法」;如果結論的方面情況有多種,那麼必須將所有的反面情況一一駁倒,才能推斷原結論成立,這種證法又叫「窮舉法」。

在數學解題中經常使用反證法,牛頓曾經說過:「反證法是數學家最精當的**之一」。一般來講,反證法常用來證明的題型有:

命題的結論以「否定形式」、「至少」或「至多」、「唯一」、「無限」形式出現的命題;或者否定結論更明顯。

7樓:齋溫邴珍

先假設最後結論成立,放過來推論條件,再與題目中的已知條件對比,一樣的話,反證法就成立,不一樣,反證法不成立

間接證明法包括哪些求同法和反證法

書裡沒有嗎?回lz 1,2 1.直接證明 2.間接證明 3數學歸納法 induction 1.歸納基礎 p 1 2.歸納步驟 m 1 p m p m 1 m.遞迴方法版 如果一個物件部分地權由自己所組成,或者按它自己定義,則稱為是遞迴的遞迴定義的函式f,f的定義域 非負整數集 1.遞迴基礎 f 0 ...

反證法的假設是要全盤否定還是部分否定,比如都不是或不都是這些。命題的否定條件不變,結果變。結果是部

全盤否定,反正他讓你掙的話,你圈出來的那個肯定是錯的,就行了 反證法和命題的否定區別,反證法的假設是全盤否定?命題的否定只有使結論不成立便可?好的話加分。謝謝 反證法是假設結論不成立,逆推條件或公理錯誤,證明原命題正確。命題的否定是證明原命題錯誤 反證法是要證明命題的否定形式還是否命題?否定形式 因...

用反證法證明極限的唯一性時,為什麼取ba

具體原因如下 證明如下 假設存在a,b兩個數都是函式f x 當x x。的極限,且a據極限的柯西定義,有如下結論 任意給定 0 要注意,這個 是對a,b都成立 總存在一個 1 0,當0 丨x x。丨 1時,使得丨f x a丨 成立。總存在一個 2 0,當0 丨x x。丨 2時,使得丨f x b丨 成立...