無理數和非零有理數相乘就一定是無理數嗎 舉例

2021-08-04 10:34:17 字數 1022 閱讀 3045

1樓:小小芝麻大大夢

是的,一定是無理數。

用反證法易證。

設a為無理數,b為非0有理數,c=ab

假設c為有理數,則有a=c/b

右邊c, b都為有理數,故c/b為有理數

因此左邊a也只能為有理數,矛盾。得證。

2樓:狂人橫刀向天笑

用反證法證明。

設a為無理數,b為非0有理數,c=ab

假設c為有理數,

則有a=c/b,

右邊c, b都為有理數,故c/b為有理數

因此左邊a也只能為有理數,矛盾。

得證。無理數,即非有理數之實數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會迴圈。

常見的無理數有非完全平方數的平方根、π和e(其中後兩者均為超越數)等。無理數的另一特徵是無限的連分數表示式。傳說中,無理數最早由畢達哥拉斯學派**希伯索斯發現。

在數學上,有理數是一個整數a和一個非零整數b的比,例如3/8,通則為a/b,故又稱作分數。0也是有理數,也是整數。

有理數是整數和分數的集合,整數亦可看做是分母為一的分數。

有理數的小數部分有限或為迴圈。不是有理數的實數遂稱為無理數。

有理數集可用大寫黑正體符號q代表。但q並不表示有理數,q表示有理數集。有理數集與有理數是兩個不同的概念。有理數集是元素為全體有理數的集合,而有理數則為有理數集中的所有元素。

整數可以看作分母為1的分數。正整數、0、負整數、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數(rational number)。有理數的小數部分有限或為迴圈。

不是有理數的實數遂稱為無理數。

3樓:米米劉

我不這樣認為,一個直徑確定為實數的圓,旋轉360度,那麼它的周長也可以為實數,但是圓周率 派=周長/直徑。

請問這裡,是周長不能確定,還是直徑不能確定,還是360度不能確定?為什麼得出一個無理數派?

4樓:澤皖妙婧

我認為不是。例如π×π分之一

無理數和有理數的概念,有理數和無理數定義的區別是什麼

有理數 rational number 能精確地表示為兩個整數之比的數 如3,98.11,5.72727272 7 22都是有理數 整數和通常所說的分數都是有理數 有理數還可以劃分為正有理數,0和負有理數 無理數指無限不迴圈小數 如 無理數與有理數的區別 1 把有理數和無理數都寫成小數形式時,有理數...

什麼是有理數,無理數

有理數 rational number 無限不迴圈小數和開根開不盡的數叫無理數 整數和分數統稱為有理數 包括整數和通常所說的分數,此分數亦可表示為有限小數或無限迴圈小數。這一定義在數的十進位制和其他進位制 如二進位制 下都適用。數學上,有理數是一個整數 a 和一個非零整數 b 的比 ratio 通常...

無理數具有稠密性嗎無理數多還是有理數多

無理數和有理數都具有稠密性,也就是說,任何兩個不相等的實數之間有無窮多個有理數和無窮多個無理數。無理數比有理數多,多得多。有理數有無窮多個,與自然數一樣多,所以稱為可數無窮。無理數與實數一樣多,不可數。在區間 0,1 上,有理數的測度為0,無理數的測度為1。無理數是所有不是有理數字的實數,後者是由整...