二階微分方程中線性和非線性的區別

2021-03-03 21:17:06 字數 5678 閱讀 9428

1樓:匿名使用者

所謂的線性微分方程來,指的是

自對函式y而言是線性bai的,也就是若y1,y2是兩個解du,則y1+y2也是解,

ay1(其中a是任意zhi

實數)也是解,因此按照這dao個定義代入微分方程就會知道是線性微分方程.

對於一階微分方程,形如:

y'+p(x)y+q(x)=0

的稱為"線性"

例如:y'=sin(x)y是線性的

但y'=y^2不是線性的

注意兩點:

(1)y'前的係數不能含y,但可以含x,如:

y*y'=2 不是線性的

x*y'=2 是線性的

(2)y前的係數也不能含y,但可以含x,如:

y'=sin(x)y 是線性的

y'=sin(y)y 是非線性的

(3)整個方程中,只能出現y和y',不能出現sin(y),y^2,y^3等等,如:

y'=y 是線性的

y'=y^2 是非線性的

怎樣判斷微分方程的線性與非線性

2樓:韓苗苗

對於線性微分方程,其中只能出現函式本身,以及函式的任何階次的導函式;函式本身跟所有的導函式之間除了加減之外,不可以有任何運算;函式本身跟本身、各階導函式本身跟本身,都不可以有任何加減之外的運算;不允許對函式本身、各階導函式做任何形式的複合運算,例如:siny、cosy、tany、lny、lgx、y2、y3。

若一個微分方程不符合上面的條件,就是非線性微分方程。

擴充套件資料線性方程:在代數方程中,僅含未知數的一次冪的方程稱為線性方程。這種方程的函式圖象為一條直線,所以稱為線性方程。

可以理解為:即方程的最高次項是一次的,允許有0次項,但不能超過一次。比如ax+by+c=0,此處c為關於x或y的0次項。

微分方程:含有自變數、未知函式和未知函式的導數的方程稱為微分方程。

如果一個微分方程中僅含有未知函式及其各階導數作為整體的一次冪,則稱它為線性微分方程。可以理解為此微分方程中的未知函式y是不超過一次的,且此方程中y的各階導數也應該是不超過一次的。

3樓:不是苦瓜是什麼

區別線性微分方程和非線性微分方程如下:

1.微分方程中的線性,指的是y及其導數y'都是一次方。如y'=2xy。

2.非線性,就是除了線性的。如y'=2xy^2。

微分方程指含有未知函式及其導數的關係式。解微分方程就是找出未知函式。

微分方程是伴隨著微積分學一起發展起來的。微積分學的奠基人newton和leibniz的著作中都處理過與微分方程有關的問題。微分方程的應用十分廣泛,可以解決許多與導數有關的問題。

4樓:**也要抽菸

常微分方程及偏微分方程都可以分為線性微分方程及非線性微分方程二類。

一般的,n階線性方程具有形式:

其中,若線性微分方程的係數均為常數,則為常係數線性微分方程。

5樓:demon陌

對於一階微分方程,形如:

y'+p(x)y+q(x)=0的稱為"線性"

例如:y'=sin(x)y是線性的

但y'=y^2不是線性的

注意兩點:

(1)y'前的係數不能含y,但可以含x,如:

y*y'=2 不是線性的

x*y'=2 是線性的

(2)y前的係數也不能含y,但可以含x,如:

y'=sin(x)y 是線性的

y'=sin(y)y 是非線性的

(3)整個方程中,只能出現y和y',不能出現sin(y),y^2,y^3等等,如:

y'=y 是線性的y'=y^2 是非線性的

6樓:林清他爹

以二階微分方程為例(高階的以此類推):經過化簡,可以變形為這種形式的稱為線性微分方程:p(x)y"+q(x)y'+r(x)y=s(x) (其中,p(x),q(x),r(x),s(x)都是已知的x的函式式)

無論如何怎麼化簡,方程中都帶有y或者y的導數的非一次方的微分方程就是非線性微分方程。

例如y'y=y2,雖然y不是一次方,但是我通過等價變形可以變成y(y'-y)=0,即y=0或者y'-y=0,因為y和y'都是一次方,因此他們是線性微分方程。而他們的係數都是常數,所以可以稱之為常係數微分方程。

再如(sinx)y'-y=0,因為y'和y的次數都是1(含有x的函式項不算),所以是線性微分方程。而y'的係數是sinx,因此是變係數常微分方程。

再如y'y=1,無論如何化簡(例如把y除過去),都不能變成y'和y次數都是1的形式,因此該方程為非線性微分方程。

再加一句:線性微分方程都有解析解,就是可以寫成函式解析式y=f(x)的形式。但是非線性微分方程就很難說了。

一般來說,部分一階非線性微分方程有解析解。但是二階或二階以上的非線性微分方程很難有解析解。

7樓:匿名使用者

所謂的線性微分方程是指微分變數(y)和微分運算元(dy/dx)的冪都是1次的微分方程。它的通解滿足線性疊加原理。

簡單的例子:y'''+y''+y'+y=0是線性的,但y'''+y''+(y')^2+y=0,或者y'''+y''+y'+y^2=0都不是線性的,因為有2次元素的存在。

8樓:乾葉農通愉

所謂的線性微分方程

linear

differential

differentiation,其中

a、只能出現函式本身,以及函式的任何階次的導函式;

b、函式本身跟所有的導函式之間除了加減之外,不可以有任何運算;

c、函式本身跟本身、各階導函式本身跟本身,都不可以有任何加減之外的運算;

d、不允許對函式本身、各階導函式做任何形式的複合運算,例如:

siny、cosy、tany、根號y、lny、lgx、y2、y3、y^x、x^y。

若不能複合上面的條件,就是非線性方程

nonlinear

differential

differentiation.

例如:y'=sin(x)y是線性的

但y'=y^2不是線性的

注意兩點:

(1)y'前的係數不能含y,但可以含x,如:

y*y'=2

不是線性的

x*y'=2

是線性的

(2)y前的係數也不能含y,但可以含x,如:

y'=sin(x)y

是線性的

y'=sin(y)y

是非線性的

9樓:藩卓然伊紅

如何判斷一個微分方程是線性,非線性

含隱變數y及其y的所有的導數,其冪是一次的。就是線性微分方程。

否則,就不是線性微分方程。

10樓:碧曉靈冠嬋

何謂線性方程:在代數方程中,僅含未知數的一次冪的方程稱為線性方程。

這種方程的函式圖象為一條直線,所以稱為線性方程。可以理解為:即方程的最高次項是一次的,允許有0次項,但不能超過一次。比如ax+by+c=0,此處c為關於x或y的0次項。

如果一個微分方程中僅含有未知函式及其各階導數作為整體的一次冪,則稱它為線性微分方程。可以理解為此微分方程中的未知函式y是不超過一次的,且此方程中y的各階導數也應該是不超過一次的。

如何判斷一個微分方程是線性,還是非線性微分方程?!

11樓:陸宵

如果一個微分方程中僅含有未知函式及其各階導數作為整體的一次冪,則稱它為線性微分方程。可以理解為此微分方程中的未知函式y是不超過一次的,且此方程中y的各階導數也應該是不超過一次的。

線性微分方程是指關於未知函式及其各階導數都是一次方,否則稱其為非線性微分方程。

12樓:林清他爹

以二階微分方程為例(高階的以此類推):經過化簡,可以變形為這種形式的稱為線性微分方程:p(x)y"+q(x)y'+r(x)y=s(x) (其中,p(x),q(x),r(x),s(x)都是已知的x的函式式)

無論如何怎麼化簡,方程中都帶有y或者y的導數的非一次方的微分方程就是非線性微分方程。

例如y'y=y2,雖然y不是一次方,但是我通過等價變形可以變成y(y'-y)=0,即y=0或者y'-y=0,因為y和y'都是一次方,因此他們是線性微分方程。而他們的係數都是常數,所以可以稱之為常係數微分方程。

再如(sinx)y'-y=0,因為y'和y的次數都是1(含有x的函式項不算),所以是線性微分方程。而y'的係數是sinx,因此是變係數常微分方程。

再如y'y=1,無論如何化簡(例如把y除過去),都不能變成y'和y次數都是1的形式,因此該方程為非線性微分方程。

再加一句:線性微分方程都有解析解,就是可以寫成函式解析式y=f(x)的形式。但是非線性微分方程就很難說了。

一般來說,部分一階非線性微分方程有解析解。但是二階或二階以上的非線性微分方程很難有解析解。

13樓:解解龍

線性即(直觀的說,做題直接可以判斷的依據):

方程中不含交叉項,如:yy'、yy''、y'y''等方程中不含高次項,如:(y'')^2、y^3等方程不含有負次項,如:

1/y、1/y''等說白了就是不是這些東西(y、y'、y''、y'''...)的線性組合,還有例如什麼e^y+y''、siny'+y多了去了

ay+by''+cy'''...就是他們的線性的組合了總之不是這些東西的線性的組合,列寫出來即為非線性方程。

微分方程論是數學的重要分支之一。大致和微積分同時產生,並隨實際需要而發展。含自變數、未知函式和它的微商(或偏微商)的方程稱為常(或偏)微分方程。

中文名:微分方程

外文名:the differential equation數學範疇:高等數學

發明人:艾薩克·牛頓

所屬學科:數學

理論基礎:極限理論

14樓:pasirris白沙

所謂的線性微分方程 linear differential differentiation,其中

a、只能出現函式

本身,以及函式的任何階次的導函式;

b、函式本身跟所有的導函式之間除了加減之外,不可以有任何運算;

c、函式本身跟本身、各階導函式本身跟本身,都不可以有任何加減之外的運算;

d、不允許對函式本身、各階導函式做任何形式的複合運算,例如:

siny、cosy、tany、根號y、lny、lgx、y2、y3、y^x、x^y、、、、、

.若不能複合上面的條件,就是非線性方程 nonlinear differential differentiation..

15樓:給伱你卟要

如果微分方程對於未知函式及它的的各階導數的有理整式的整體而言是一次的,稱為線性微分方程。否則是非線性微分方程。

16樓:愛丞

微分方程階數就是未知量函式的導數的最高階。未知量函式及其各階導數都是一次的,即為線性的,否則就是非線性的。

各位大神,微分方程的一階線性非線性是什麼?二階線性和非線性

17樓:驀然擺渡

階數bai -- 微分

方程中未知函式du導數的最高階數為zhi微分方程的階數;

線性 -- 是指dao微分方程中所含的回未知函式及其導答數都是一次的;

例如:ay''+by'+cy = f(x)未知函式y的導數最高為2階導,所以是二階微分方程。

y''、y'、y 都是一次的(即不含平方、立方、三角函式、對數函式等),因此該方程是二階線性微分方程!

可降階的二階微分方程和二階常係數線性微分方程的區別

可降階的就是把y 換成y,算出y後再積分!實際上就是一階的!可降階的二階微分方程 1,y f x 型的微分方程 此類方程特點是 方程右端僅含有自變數x,只需積分兩次便可得到方程的通解。2,y f x,y 型的微分方程 此類方程特點是 方程右端不顯含未知函式y。作變數代換y p x 3,2,y f y...

二階常係數線性微分方程求下列方程的通解yyxex

特徵方程為r 2 1 0,r i 所以y1 c1sinx c2cosx 顯然一個特解y2 x e x 2 所以y y1 y2 c1sinx c2cosx x e x 2 設二階常係數線性微方程y ay by 0的通解為y c1e x c2e 2x,那麼非齊次方程 y e 2x x 1 e x y 2...

關於二階常係數非齊次線性微分方程求特解y形式的題目我非常的

性非來齊次微分方程的通 解 對應齊自次微分方bai程的通解du 特解求解過程大致分以下兩步進行zhi dao 1 求對應齊次微分方程y y 0.1 的通解,方程 1 的特徵方程為r 2 1 0,則r 1,1 從而方程 1 的通解就是y ce x de x c d為待求量,這裡還需用到兩個邊界條件,不...