一階線性非齊次微分方程ypxyqx的通解是

2021-03-10 02:55:25 字數 2809 閱讀 3669

1樓:嘉茜邸宇

^^先算抄

對應的齊次方程

的解.y'+p(x)y=0

y'/y=-p(x)

lny=-∫襲p(x)dx+c

y=ke^(-∫p(x)dx)

下面用常數變易法求解原方程的解.

設k為u(x)

y=u(x)e^(-∫p(x)dx)

y'=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)

代入得:

q(x)

=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)+u(x)p(x)e^(-∫p(x)dx)

u(x)=∫q(x)e^(∫p(x)dx)+cy=e^(-∫p(x)dx)(∫q(x)e^(∫p(x)dx)+c)

2樓:秦吉帆慕宣

^先算對應bai的齊次方程的解.

y'+p(x)y=0

y'/y=-p(x)

lny=-∫dup(x)dx+c

y=ke^(-∫p(x)dx)

下面用常數變易法zhi求解原方程的解.

設daok為u(x)

y=u(x)e^(-∫p(x)dx)

y'=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)

代入得:

q(x)

=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)+u(x)p(x)e^(-∫p(x)dx)

u(x)=∫q(x)e^(∫p(x)dx)+c

y=e^(-∫p(x)dx)(∫q(x)e^(∫p(x)dx)+c)

擴充套件資料:

定義形如

(記為式1)的方程稱為一階線性微分方程。其特點是它關於未知函式y及其一階導數是一次方程。這裡假設

, 是x的連續函式。

若 ,式1變為

(記為式2)稱為一階齊線性方程。

如果 不恆為0,式1稱為一階非齊線性方程,式2也稱為對應於式1的齊線性方程。式2是變數分離方程,它的通解為

,這裡c是任意常數。

參考資料:搜狗百科——一階線性微分方程

一階線性非齊次微分方程y'=p(x)y+q(x)的通解是?

3樓:匿名使用者

^^先算對copy應的齊次方程的解.

y'+p(x)y=0

y'/y=-p(x)

lny=-∫

baip(x)dx+c

y=ke^(-∫p(x)dx)

下面用du常數變易法求解原zhi方程的解.

設k為daou(x)

y=u(x)e^(-∫p(x)dx)

y'=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)

代入得:

q(x)

=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)+u(x)p(x)e^(-∫p(x)dx)

u(x)=∫q(x)e^(∫p(x)dx)+cy=e^(-∫p(x)dx)(∫q(x)e^(∫p(x)dx)+c)

4樓:天平座de魚

一階線性非齊次微分方程的話,這個通解嗯比較難,我數學老師嗯交的晚。

5樓:

^先算對應的齊次來方程的解自.

y'+p(x)y=0

y'/y=-p(x)

lny=-∫

p(x)dx+c

y=ke^bai(-∫p(x)dx)

下面用常數變易du法求解原方程的zhi解.

設k為u(x)

y=u(x)e^(-∫p(x)dx)

y'=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)

代入得:dao

q(x)

=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)+u(x)p(x)e^(-∫p(x)dx)

u(x)=∫q(x)e^(∫p(x)dx)+cy=e^(-∫p(x)dx)(∫q(x)e^(∫p(x)dx)+c)

一階線性微分方程y'+p(x)y=q(x)的通解公式是什麼?

6樓:

^解:先算對應的齊次方程的解。

y'+p(x)y=0

y'/y=-p(x)

lny=-∫p(x)dx+c

y=ke^(-∫p(x)dx)

下面用常數變易回法求解原方程答的解。

設k為u(x)

y=u(x)e^(-∫p(x)dx)

y'=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)

代入得:

q(x)

=u'(x)e^(-∫p(x)dx)-u(x)p(x)e^(-∫p(x)dx)+u(x)p(x)e^(-∫p(x)dx)

u(x)=∫q(x)e^(∫p(x)dx)+cy=e^(-∫p(x)dx)(∫q(x)e^(∫p(x)dx)+c)

一階線性微分方程,型如:y′+p(x)y=q(x),求其通解公式的推導過程。

7樓:神的味噌汁世界

驗算y'+xy=x,p(x)=x,q(x)=xy=1+ce^-(1/2x)

結果正確

有一點要注意的。

關於積分時的常數c的問題。因為是一階微分方程,總共需內要一個容常數,所以只需要在其中的某一次積分中加入常數c即可。若取p(x)積分過程中的常數c,需要兩次對p積分時的常數取值相等,最後會發現它被約掉了。

所以只能取最後一步積分過程中的常數c

一階線性齊次微分方程dydxpxy0如何解答

屬於最簡單的 dy y p x dx,兩邊積分 ln y 積分p x dx 關於一階線性非齊次微分方程 伯努利方程 的通解 dy dx p x y q x y n 有幾bai點要先弄明白 1 微分方程du的通解不一定包含它的所 zhi有解,有些dao特殊解不包含在通解中。內 容2 利用初等方法 初等...

關於二階常係數非齊次線性微分方程求特解y形式的題目我非常的

性非來齊次微分方程的通 解 對應齊自次微分方bai程的通解du 特解求解過程大致分以下兩步進行zhi dao 1 求對應齊次微分方程y y 0.1 的通解,方程 1 的特徵方程為r 2 1 0,則r 1,1 從而方程 1 的通解就是y ce x de x c d為待求量,這裡還需用到兩個邊界條件,不...

關於二階常係數非齊次線性微分方程求特解y形式的題目我非常的

1.一般求法是先求齊次方程的通解,然後再根據非齊次項的特點求特解.因此,對於你給的練習題,先得出通解為y1 e x,y2 e 2x 然後根據3x 2設一特解為y ax b,代入得a 3 2,b 5 4於是y 3x 2 5 4故通解為y c1 e x c2 e 2x 3x 2 5 42.特解的形式與自...