關於極限的概念,定義中越小,也相應的越小嗎

2021-03-03 21:18:31 字數 5486 閱讀 8353

1樓:匿名使用者

如圖所示,根

bai據同濟第七版高數du上zhi冊第28頁對極限的定義,極dao限值即為函式內值,ε描述容了函式值f(x)與它在x0的函式值f(x0)的距離,δ描述了滿足這個距離的x的範圍。即ε是對於值域的,δ是對於定義域的,ε的確定決定了δ的確定。

因而可以認為ε越小,δ也相應的越小

極限定義中「ε」和「δ」的關係是什麼?

2樓:手機使用者

f(x)是函式

copy,l是在x=c處的極限值若是給定bai了δ,則給定了自變du數(即自變數)x的範圍(c-δ),(c+δ),其值域就決定

zhi了,即使dao這個函式f(x)極限不是l或者沒有極限,也可以求出ε使之滿足 |f(x)-l |

希望採納

如何理解極限定義

3樓:為誰為誰為

可定義某一個數列的收斂:

設為一個無窮實數數列的集合。如果存在實數a,對於任意正數ε (不論其多麼小),都

如果上述條件不成立,即存在某個正數ε,無論正整數n為多少,都存在某個n>n,使得

對定義的理解:

又因為ε是任意小的正數,所以ε/2 、3ε 、ε2 等也都在任意小的正數範圍,因此可用它們的數值近似代替ε。同時,正由於ε是任意小的正數,我們可以限定ε小於一個某一個確定的正數。

注意幾何意義中:

1、在區間(a-ε,a+ε)之外至多隻有n個(有限個)點;2、所有其他的點

4樓:angela韓雪倩

大n表示一個坎兒,xn表示按一個規律計算出來的x值,第1個x記為x1、第2個x記為x2、第n個x記為xn,這裡面的1、2、3......n都是正整數,

不管ε多小,當n>n,越過了這個坎兒以後,所有的x值減去a,都小於那個ε,這樣就認為x收斂於a

5樓:柿子的丫頭

1.是指無限趨近於一個固定的數值。

2.數學名詞。在高等數學中,極限是一個重要的概念。

極限可分為數列極限和函式極限.

學習微積分學,首要的一步就是要理解到,「極限」引入的必要性:因為,代數是人們已經熟悉的概念,但是,代數無法處理「無限」的概念。所以為了要利用代數處理代表無限的量,於是精心構造了「極限」的概念。

在「極限」的定義中,我們可以知道,這個概念繞過了用一個數除以0的麻煩,而引入了一個過程任意小量。

就是說,除數不是零,所以有意義,同時,這個過程小量可以取任意小,只要滿足在δ的區間內,都小於該任意小量,我們就說他的極限為該數——你可以認為這是投機取巧,但是,他的實用性證明,這樣的定義還算比較完善,給出了正確推論的可能。這個概念是成功的。

數列極限標準定義:對數列,若存在常數a,對於任意ε>0,總存在正整數n,使得當n>n時,|xn-a|<ε成立,那麼稱a是數列的極限。

函式極限標準定義:設函式f(x),|x|大於某一正數時有定義,若存在常數a,對於任意ε>0,總存在正整數x,使得當x>x時,|f(x)-a|<ε成立,那麼稱a是函式f(x)在無窮大處的極限。

設函式f(x)在x0處的某一去心鄰域內有定義,若存在常數a,對於任意ε>0,總存在正數δ,使得當

|x-xo|<δ時,|f(x)-a|<ε成立,那麼稱a是函式f(x)在x0處的極限。

擴充套件資料

數列極限的基本性質

1.極限的不等式性質

2.收斂數列的有界性

設xn收斂,則xn有界。(即存在常數m>0,|xn|≤m, n=1,2,...)

3.夾逼定理

4.單調有界準則:單調有界的數列(函式)必有極限

函式極限的基本性質

1.極限的不等式性質

2.極限的保號性

3.存在極限的函式區域性有界性

設當x→x0時f(x)的極限為a,則f(x)在x0的某空心鄰域u0(x0,δ) = 內有界,即存在 δ>0, m>0,使得0 < | x - x0 | < δ 時 |f(x)| ≤m.

4.夾逼定理

6樓:demon陌

n是根據你的ε ,而假定存在的某一個數.在不等式中體現在只需要比n大的n這些xn成立,比n小的不作要求.

比如:序列:1/n

極限是0

如果取:ε =1/10

則n取10

擴充套件資料:

「極限」是數學中的分支——微積分的基礎概念,廣義的「極限」是指「無限靠近而永遠不能到達」的意思。數學中的「極限」指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而「永遠不能夠重合到a」(「永遠不能夠等於a,但是取等於a『已經足夠取得高精度計算結果)的過程中。

此變數的變化,被人為規定為「永遠靠近而不停止」、其有一個「不斷地極為靠近a點的趨勢」。極限是一種「變化狀態」的描述。此變數永遠趨近的值a叫做「極限值」(當然也可以用其他符號表示)。

極限的思想方法貫穿於數學分析課程的始終。可以說數學分析中的幾乎所有的概念都離不開極限。在幾乎所有的數學分析著作中,都是先介紹函式理論和極限的思想方法,然後利用極限的思想方法給出連續函式、導數、定積分、級數的斂散性、多元函式的偏導數,廣義積分的斂散性、重積分和曲線積分與曲面積分的概念。

如:(1)函式在 點連續的定義,是當自變數的增量趨於零時,函式值的增量趨於零的極限。

(2)函式在 點導數的定義,是函式值的增量 與自變數的增量 之比 ,當 時的極限。

(3)函式在 點上的定積分的定義,是當分割的細度趨於零時,積分和式的極限。

(4)數項級數的斂散性是用部分和數列 的極限來定義的。

(5)廣義積分是定積分其中 為,任意大於 的實數當 時的極限,等等。

性質1、唯一性:若數列的極限存在,則極限值是唯一的,且它的任何子列的極限與原數列的相等。

2、有界性:如果一個數列』收斂『(有極限),那麼這個數列一定有界。

但是,如果一個數列有界,這個數列未必收斂。例如數列 :「1,-1,1,-1,......,(-1)n+1」

7樓:彩票就是買房錢

|xn-a|,e是任意的且大於0(e是任意的且大於0已知)等價於|xn-a|《很小的值,|xn-a|越小滿足的xn就越少。此時n的範圍在縮小,在n>n(已知)的縮小方式中,只能通過增大n的方式。很小的值不斷變小,都對應一個很大的n,很小的值小到一定程度,很大的n也大到一定程度,這個大非常非常大可以認為無窮大,此時n可以認為趨於無窮大。

1,想要任意e>0,有|xn-a|0,當n>n的條件下,必然對應著n趨於無窮大

2 任意e>0,有|xn-a|

8樓:匿名使用者

場景:中秋節,大a帶著小a爬青城後山,從山下的客棧出發

小a:表哥,青城山是不是修仙的地方哇

大a:修仙遊戲**看多了吧,別磨磨唧唧了,趕緊出發吧

小a:表哥等等我

半個小時後

小a:表哥,這山到底多高呀,我們爬了山百分之多少了哇?需要爬幾個小時呀

大a:還早吧,反正是來玩的,看看風景吧

一個小時後

小a:表哥你走慢點行不行,好累啊,我們是不是快到了

大a:行吧,我們走到前面的亭子歇一會兒,叫你平時鍛鍊身體不信,這麼一會兒就不行了!我也沒有來過,不知道我們的進度多少了,看前面的小朋友都比你快!

小a:終於可以緩一口氣了,這山是不是沒有山頂啊?

大a:廢話,沒山頂誰還來爬山!

小a:那如何能夠說明這山是有頂峰的?

大a:你不是剛大一,學過高數吧?這玩意兒跟極限是如出一轍的

小a:表哥。爬個山還要學高數,至於嗎?

(心想:其實我第一章就沒學懂,只會用,那麼晦澀的定義,寫這書的人真是有毛病)

大a:看樣子你是沒學懂極限的定義,如果山有頂峰,我們可不可以理解成存在極限呢?

小a:這好理解嘛,如果山存在頂峰,說明它的高度是確定的,山高的數值就確定,當然也可以認為存在極限,不過這怎麼可以跟極限的定義聯絡上呢?

大a:那你回顧一下極限定義是如何敘述的?

小a:(心想:臥槽,還好剛學背過概念)

存在一個x0,對於任意的x>x0時,存在一個ε>0,使得|f(x)-l|<ε,那麼f(x))極限為l

大a:不錯嘛,大致沒記錯,仔細看看跟爬山有什麼相似之處

小a似懂非懂的想了想,一臉懵逼,說道:不知道呢?不帶這麼虐我的

大a:哈哈,所以說剛才的概念肯定是背住的,其實很好理解,你想為什麼概念裡會說存在一個x0?

小a:這不是定義嘛,我怎麼知道學數學的怪咖為何這樣寫的

大a:其實x0就是起點,我們不管去哪兒都有一個起點對吧,在這個情景中,x0就是我們出發的客棧的位置

小a:那幹嘛要有起點呀?我們爬山不關心起點在哪兒啊

大a:你說的沒錯,我們爬山確實不用關心起點在**,但是對於嚴謹的數學來說,不給起點,誰知道你何時何地出發的,沒辦法給出嚴謹的定義。我再舉個栗子,你高中自學易語言的時候變數幹嘛要初始化才能用

小a:不給初始化,計算機真的不知道它是什麼東西,也就沒法執行了

大a:對嘛,所有的程式語言都是這樣,所以計算機才會給出一個預設值,假如你不初始化,它用預設值給你初始化。扯得有點遠了,不管是

9樓:a你好蘇

這是數學流氓玩的文字遊戲!

10樓:匿名使用者

怎麼直觀理解「無限接近」呢?給出任意一個正值epsilon>0,數列「接近」某個值的程度總能比這個epsilon更小,那也就是無限接近了。

你有**不太理解,可以幫你解釋。

11樓:匿名使用者

通俗點說,極限就是

當n無限增大時,an無限接近某個常數a

也就是n足夠大時,|an-a|可以任意小,小於我給定的正數e也就是當n大於某個正整數n時,|an-a|可以小於給定的正數e即:對於任意e>0,存在正整數n,當n>n時,|an-a|

12樓:匿名使用者

n就是根據e求出的一個數啊

高數函式極限中,ε和δ之間的關係

13樓:匿名使用者

δ依賴於ε,但也不是由ε唯一確定。一般來說ε越小,δ也相應小一些,而且把δ回取得更小些也答無妨。其幾何意義是:

對任給的ε>0,在座標平面上畫一條以直線y=a為中心線、寬為2ε的橫帶,則必存在以直線x=x0為中心線、寬為2δ的豎帶,使函式y=f(x)的影象在該豎帶中的部分全部落在橫帶內,但點(x0,f(x0))可能例外(或無意義)。

14樓:匿名使用者

一般來講,δ是ε的函式δ=δ(ε),當ε較小時,δ就越小。

ε是用來表示f(x)與極限值的距離

δ是用來表示x與點xo的距離

15樓:匿名使用者

一個表示極限值,一個表示函式距極限值的距離。

關於極限ε-ν定義中ε取值的一個問題

16樓:西域牛仔王

收斂到時,ε 是任意正數,通常認為是無窮小,

不收斂到時,ε 僅僅是一個正的常數而已,就是一個正數,可大可小。

數列極限的定義中的問題關於數列極限的定義

解答 1 n是項數。是我們解出來的項數,從這一項 第n項 起,它後面的每一項 的值與極限值之差的絕對值小於任何一個給定的數 2 由於 是任給的一個很小的數,n是據此算出的數。可能從第n項起,也可 能從它後面的項起,數列的每一項之值與極限值之差的絕對值小於 是理論上假設的數,n是理論上存在的對應於 的...

關於數列極限的定義,數列極限的定義看不懂

數列極復限用通俗的語言來說就制 是 對於數列an,如果它的極限是a,那麼,不管給出多小的正數 總能找到正整數n,只要數列的下標n n,就能保證 an a 比如對於這樣一個數列 an n 當n 100時 或an 1 n 當n 100時 這個數列的極限是0。當對於任意給定的正數比如1 3,數列下標在1 ...

關於數列極限定義的理解問題數列極限定義的理解高手進!!!

首先,極限是一個很直觀的概念 我相信你早就明白了 其次,要將極限用數學語言表述出來是不那麼容易的,所以你可以根據自己的理解給個定義,或者改變n和 這兩條件的順序,就能找出一些反例了,肯定就能明白為什麼 在前,而n隨 變化而改變 一般是增加 事實上n可理解為以 為自變數的函式 n不必唯一確定,也不必足...