傅立葉級數與傅立葉變換,傅立葉級數與傅立葉變換異同點

2021-05-30 13:00:21 字數 3693 閱讀 6255

1樓:科技數碼答疑

不需要分段積分,sinx的絕對值,週期減為pi

修改積分割槽間為0到pi,即可

傅立葉級數與傅立葉變換異同點

2樓:王王王小六

一、相同點

傅立葉級數和傅立葉變換都源自於傅立葉原理得出;傅立葉變換是從傅立葉級數推演而來的,傅立葉級數是所有周期函式都可以分解成一系列的正交三角函式,這樣,周期函式對應的傅立葉級數即是它的頻譜函式。

二、不同點

1、本質不同

傅立葉變換是完全的頻域分析,而傅立葉級數是週期訊號的另一種時域的表達方式,也就是正交級數,它是不同的頻率的波形的疊加。

2、適用範圍不同

傅立葉級數適用於對週期性現象做數學上的分析,傅立葉變換可以看作傅立葉級數的極限形式,也可以看作是對週期現象進行數學上的分析,同時也適用於非週期性現象的分析。

3、週期性不同

傅立葉級數是一種週期變換,傅立葉變換是一種非週期變換。傅立葉級數是以三角函式為基對週期訊號的無窮級數,如果把周期函式的週期取作無窮大,對傅立葉級數取極限即得到傅立葉變換。

3樓:匿名使用者

你好,這個怎麼說呢 我研究過 傅立葉級數可以說是一對於一個週期性的函式而言的,然而當我們把週期看成無窮大時,那麼離散的傅立葉級數也就成為了連續的傅立葉變換了,然後在利用哪個尤拉公式,將它變成了實數與複數的傅立葉變換了,這個是時域與頻域的變換,這個變換大大的化簡了在時域裡面的運算,我們可以看到傅立葉變換的求導和積分都是在原來的基礎上多了一個幅度的變化而已,f(ω)= e^iωt,連續形式的傅立葉變換其實是傅立葉級數的推廣,因為積分其實是一種極限形式的求和運算元而已。離散傅立葉變換是離散時間傅立葉變換(dtft)的特例(有時作為後者的近似)。dtft在時域上離散,在頻域上則是週期的。

dtft可以被看作是傅立葉級數的逆。對於周期函式,其傅立葉級數是存在的: 這是一個非常奇妙的變換,當是我學習是非常感興趣,認為這種變換怎麼可能,但是科學的永遠是正確的,呵呵,但是也就那些模糊的假科學哈,最終被推翻了。

呵呵,還有建議你多看看複變函式那本書,說實話真的很好,我當初認為復變不重要,後來學了訊號處理方面的知識,才知道復變是多麼多麼的重要,兄弟加油哦,呵呵 很高心為你幫忙,希望對你又用。。。。

4樓:匿名使用者

首先一個訊號,比如x(t)是一個奇形怪狀的函式。我們很難對他進行分析。

但是x(t)=很多有規律的函式疊加。。。

於是我們就尋找這些有規律的函式來代表x(t),這就是對x(t)進行分解。

分解有很多種類,其中非常牛b的一種是正交分解。

三角函式族恰好就是一個正交函式族。週期為t 2t 3t...nt的三角函式能夠通過疊加組合出所有周期為t的連續函式。

就是說x(t)=a1*基1+a2*基2....+an*基n (其中基n是週期為t/n的三角函式...)。

為什麼會這樣呢?數學分析上是使用:黎曼勒貝格引理+區域性收斂+狄裡赫雷核積分推出的。

泛函上證明要簡潔些。不過這些你都不需要太過於專注(就連傅立葉都沒有證明出來的),你只需要記住週期nt三角函式疊加能表示週期為t的連續函式。

x(t)=a1*基1+a2*基2....+an*基n。那麼前面的係數ai怎麼求呢,這時函式正交的作用就體現出來了。

直接用(x,基n)內積 ,就可以得出係數an。至於為什麼,你可以自己算下,利用(基i,基j)=δij就可推出結果。

當x(t)沒有明確的週期的時候,我們假定他的週期是無窮大,再用複數來表示各個正交基,在係數上乘以t(這時的t是無窮大,如果不乘以t的話,l1l2空間的函式的傅立葉變變換就是無窮小了),這樣就成了傅立葉變換了。傅立葉變換難很多。因為傅立葉變換的定義域大大超過了l1l2空間。

有些函式廣義積分不存在,但是傅立葉變換存在。所以在處理這些積分的時候,必須要利用某些特殊函式的性質,比如衝擊函式,階躍函式等,進行反向的推導。

傅立葉變換與傅立葉級數怎麼算,是不是隻要知道x或w的實值就可以計算了,過程詳細點,我沒學過高數

5樓:匿名使用者

答:1、首先bai因為你沒

du有學過,因此,就zhi算詳細告訴你,你也不一定能dao明白;因為,這個

專當中涉及屬到級數,廣義積分等概念,讓你明白又詳細是不可能的;

2、只能根據公式來,其中「ω」,可不是固定的變數值,也不是w,讀作 「omega」;

3、根據公式,你可以:將被求函式f(t)帶入,然後求出f(t)·e^(iωt),進而求出其廣義積分;

4、某些特殊函式的傅立葉變換已經求出,你可以直接搜

傅立葉級數到傅立葉變換的證明

6樓:超級

為什麼我叫超級ag,因為我超級ag,回到完畢

7樓:匿名使用者

237740129

我啥也不知道別加我

傅立葉變換的作用?

8樓:南大飛秒

通過飛秒檢測發現傅立葉變換,表示能將滿足一定條件的某個函式表示成三角函式(正弦和/或餘弦函式)或者它們的積分的線性組合。在不同的研究領域,傅立葉變換具有多種不同的變體形式,如連續傅立葉變換和離散傅立葉變換。最初傅立葉分析是作為熱過程的解析分析的工具被提出的。

傅立葉變換是一種分析訊號的方法,它可分析訊號的成分,也可用這些成分合成訊號。許多波形可作為訊號的成分,比如正弦波、方波、鋸齒波等,傅立葉變換用正弦波作為訊號的成分。

f(t)是t的周期函式,如果t滿足狄裡赫萊條件:在一個以2t為週期內f(x)連續或只有有限個第一類間斷點,附f(x)單調或可劃分成有限個單調區間,則f(x)以2t為週期的傅立葉級數收斂,和函式s(x)也是以2t為週期的周期函式,且在這些間斷點上,函式是有限值;在一個週期內具有有限個極值點;絕對可積。則有下圖1式成立。

稱為積分運算f(t)的傅立葉變換,

2式的積分運算叫做f(ω)的傅立葉逆變換。f(ω)叫做f(t)的像函式,f(t)叫做

f(ω)的像原函式。f(ω)是f(t)的像。f(t)是f(ω)原像。

用正弦曲線來代替原來的曲線而不用方波或三角波來表示的原因在於,分解訊號的方法是無窮的,但分解訊號的目的是為了更加簡單地處理原來的訊號。用正餘弦來表示原訊號會更加簡單,因為正餘弦擁有原訊號所不具有的性質:正弦曲線保真度。

一個正弦曲線訊號輸入後,輸出的仍是正弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。且只有正弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。

用正弦曲線來代替原來的曲線而不用方波或三角波或者其他什麼函式來表示的原因在於:正弦訊號恰好是很多線性時不變系統的特徵向量。於是就有了傅立葉變換。

對於更一般的線性時不變系統,復指數訊號(表示耗散或衰減)是系統的「特徵向量」。於是就有了拉普拉斯變換。z變換也是同樣的道理,這時是離散系統的「特徵向量」。

這裡沒有區分特徵函式和特徵向量的概念,主要想表達二者的思想是相同的,只不過一個是有限維向量,一個是無限維函式。

傅立葉級數和傅立葉變換其實就是我們之前討論的特徵值與特徵向量的問題。分解訊號的方法是無窮的,但分解訊號的目的是為了更加簡單地處理原來的訊號。這樣,用正餘弦來表示原訊號會更加簡單,因為正餘弦擁有原訊號所不具有的性質:

正弦曲線保真度。且只有正弦曲線才擁有這樣的性質。

這也解釋了為什麼我們一碰到訊號就想方設法的把它表示成正弦量或者復指數量的形式;為什麼方波或者三角波如此「簡單」,我們非要的如此「麻煩」;為什麼對於一個沒有什麼規律的「非週期」訊號,我們都絞盡腦汁的用正弦量。就因為正弦量(或復指數)是特徵向量。

什麼叫傅立葉係數傅立葉級數,傅立葉積分與傅立葉變換三者之間的關係

傅立葉係數由fourier coefficient翻譯而來,有多箇中文譯名,如傅立葉係數。它是數學分析中的一個概念,常常被應用在訊號處理領域中。對於任意的週期訊號,如果滿足一定條件,都可以三角函式的線性組合,每個項的係數稱為傅立葉係數。一般地說,若f是以2 為週期且在 上可積的函式,則可按公式計算出...

高數成傅立葉級數,高數成傅立葉級數。

一個是簡寫,一個是具體囊括寫出 就比如說 2x 3 的平方,這個是簡寫 讓你寫出它的式 但傅立葉級數一般都是無窮的,都用n表示 高數fx為傅立葉級數 使用傅立葉級數的公式 1 先求a0 a0 1 e68a84e8a2ad62616964757a686964616f31333363373661 f x...

傅立葉級數是什麼傅立葉級數什麼意思?

一 傅立葉級數的三角函式形式 設f t 為一非正弦周期函式,其週期為t,頻率和角頻率分別為f 1。由於工程實際中的非正弦周期函式,一般都滿足狄裡赫利條件,所以可將它成傅立葉級數。即 其中a0 2稱為直流分量或恆定分量 其餘所有的項是具有不同振幅,不同初相角而頻率成整數倍關係的一些正弦量。a1cos ...