上連續,在0,1內可導,證明存在0,1使得ffef1ef

2021-03-03 20:27:53 字數 2499 閱讀 2653

1樓:鍾雲浩

設f(x)=(e^x)f(x), 則:

f(x)在自[0,1]上連續,在(0,1)內可導由拉格朗日bai中值定理,

存在ξdu∈(0,1),使得:zhi

f'(ξ)*(1-0)=f(1)-f(0)(e^ξ)f(ξ)+(e^ξ)f'(ξ)=f(1)e-f(0)f(ξ)+f'(ξ)=(e^(-ξ))[f(1)e-f(0)]不知道為什dao麼算出來的是e^(-ξ),和答案有出入,是不是題目抄漏了一個負號?

2樓:匿名使用者

你確認你寫得結論是這樣子的?如果確認,那這題就是錯題。

反例:f(x)=e^x,f(1)e-f(0)=e^2-1,

f(x)+f'(x)=2e^x,不存在使得結論等式成立的ξ。

設函式f(x)在[0,1]上連續,在(0,1)內可導,有f(1)=0.證明:至少存在一點ε∈(0,1),使f'(x)=-f(ε)/ε。

3樓:你愛我媽呀

證明過程如下:

設g(x)=xf(x),

則g'(x)=xf'(x)+f(x) , g(1)=1f(1)=0 , g(0)=0*f(0)=0。

所以g(x)在[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中值定理得:

存在一點ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0.

所以f'(ε)=-f(ε)/ε。

4樓:匿名使用者

證明:設g(x)=xf(x),

則g'(x)=xf'(x)+f(x) , g(1)=1f(1)=0 , g(0)=0*f(0)=0

所以g(x)在[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中值定理得:

存在一點ε∈(0,1),使g'(ε)=εf'(ε)+f(ε) =(g(1)-g(0))/(1-0)=0

所以f'(ε)=-f(ε)/ε

設函式f(x)在[0,1]上連續,在(0,1)內可導,有f(1)=0.證明:至少存在一點ε∈(0

5樓:匿名使用者

證:建構函式f(x)=xf(x)

f(0)=0·f(0)=0,f(1)=1·f(1)=1·0=0f'(x)=[xf(x)]'=f(x)+xf'(x)由羅爾中值定理,在(0,1)內,至版少存在一點ξ權,使得:

f'(ξ)=[f(1)-f(0)]/(1-0)=(0-0)/(1-0)=0

f(ξ)+ξf'(ξ)=0

f'(ξ)=-f(ξ)/ξ

6樓:俺們張學建

最簡單的方法,構造特殊函式,f(x)=0,

7樓:孝飛白寶清

證明:du設g(x)=xf(x),

則g'(x)=xf'(x)+f(x)

,g(1)=1f(1)=0

,g(0)=0*f(0)=0

所以g(x)在zhi[0,1]上連續,在(0,1)內可導且g(0)=g(1),由羅爾中dao

值定理得:

存在內一點ε

容∈(0,1),使g'(ε)=εf'(ε)+f(ε)=(g(1)-g(0))/(1-0)=0

所以f'(ε)=-f(ε)/ε

設f(x)在【0,1】上連續,在(0,1)內可導,且f(1)=0.證明:存在ξ∈(0,1),使f'(ξ)=-f(ξ)/ξ

8樓:匿名使用者

證明:令g(x)=xf(x),g'(x)=f(x)+xf'(x)∵制f(x)在bai[0,1]連續,在(du0,1)可導∴g(x)在[0,1]連續,在(0,1)可導∵g(0)=0,g(1)=f(1)=0

∴根據羅爾中值定理知道,zhi

存在ξ∈(dao0,1)使得g'(ξ)=0∴g'(ξ)=f(ξ)+ξf'(ξ)=0

∴f'(ξ)=-f(ξ) /ξ

命題得證

9樓:霧光之森

令baig(x)=xf(x),0<=x<=1.

那麼g(0)=g(1)=0,g'(x)=xf'(x)+f(x).

則根據羅爾定理,存du在ξ

zhi∈(0,1),使得g'(ξ)=ξf'(ξ)+f(ξ)=0,即daof'(ξ)=-f(ξ)/ξ.

[附上思路

內:根據結論考慮容f'(x)+xf(x),看它能否變成某個新函式的導數,容易觀察得出xf(x)就是所需要的.]

設f(x)在[0,1]上連續,在(0,1)內可導,且f(1)=0,證明:存在ξ屬於(0,1),使3

10樓:匿名使用者

^令g(x)=x^3*f(x),則g(x)在[0,1]上連續bai,在(0,1)內可du導

因為g(0)=0,g(1)=f(1)=0,所以根據zhi羅爾定理存在dao

ξ版∈(0,1),使得g'(ξ)=0

3ξ^權2*f(ξ)+ξ^3*f'(ξ)=03f(ξ)+ξf'(ξ)=0證畢

上連續且在(0,1)內可導,且f 0 f 1 0,f 1 2 1 證明 (1)至少有一點m屬於(

1.取g x f x x,連續得證 2.取h x g x e ax,羅爾中值定理 h x 0 存在x屬於 0,m 使得f x a f x x 1 解 1 令g x f x x 因為f x 在 0,1 內連續 所以g x 在 0,1 內也是連續的 又當x 1 時g 1 0 1 1 0 當x 1 2 時...

設函式f x 在上連續,在(0,1)上可導,且f 1 f 0 0,f

根據有關法則,f 應當連續,而且有一點是0 假如f 在定義域不等於1,那麼一定小於1,則 0 1 2 f 1 2,這與f 1 2 1矛盾,故題設成立 可以考慮羅爾定理 答案如圖所示 一 1 令f x f x x 則f 1 2 1 2,f 1 1 有零點定理知,f x 在 1 2 1 上有零點,故存在...

上連續,在 a,b 內可導,且f a f b 0,但在 a,b 內f x 不等於零,證明ff

let g x f x e zhi nx g a g b 0 在 a,b 內至少存在 dao一點回 答 使g 0 i.e.f e n f n e n 0 f nf 0,let n 2009 f f 2009 如何證明若函式f x 在 a,b 上連續,且f2 x 在 a,b 上的積分為零?有一個結論是...